Involvement of the cbb3-Type Terminal Oxidase in Growth Competition of Bacteria, Biofilm Formation, and in Switching between Denitrification and Aerobic Respiration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA16-18476S
Grantová Agentura České Republiky
PubMed
32806683
PubMed Central
PMC7464135
DOI
10.3390/microorganisms8081230
PII: microorganisms8081230
Knihovny.cz E-zdroje
- Klíčová slova
- biofilm, branched electron flow, denitrification, respiratory chain, terminal oxidases,
- Publikační typ
- časopisecké články MeSH
Paracoccus denitrificans has a branched electron transport chain with three terminal oxidases transferring electrons to molecular oxygen, namely aa3-type and cbb3-type cytochrome c oxidases and ba3-type ubiquinol oxidase. In the present study, we focused on strains expressing only one of these enzymes. The competition experiments showed that possession of cbb3-type oxidase confers significant fitness advantage during oxygen-limited growth and supports the biofilm lifestyle. The aa3-type oxidase was shown to allow rapid aerobic growth at a high oxygen supply. Activity of the denitrification pathway that had been expressed in cells grown anaerobically with nitrate was fully inhibitable by oxygen only in wild-type and cbb3 strains, while in strains aa3 and ba3 dinitrogen production from nitrate and oxygen consumption occurred simultaneously. Together, the results highlight the importance of the cbb3-type oxidase for the denitrification phenotype and suggest a way of obtaining novel bacterial strains capable of aerobic denitrification.
Zobrazit více v PubMed
Zumft W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997;61:533–616. doi: 10.1128/.61.4.533-616.1997. PubMed DOI PMC
Coyne M.S. Biological denitrification. In: Schepers J.S., Raun W.R., editors. Nitrogen in Agricultural Systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; Madison, WI, USA: 2008. pp. 202–254.
Kucera I., Dadak V., Dobry R. The distribution of redox equivalents in the anaerobic respiratory chain of Paracoccus denitrificans. Eur. J. Biochem. 1983;130:359–364. doi: 10.1111/j.1432-1033.1983.tb07161.x. PubMed DOI
Pan Y., Ni B.J., Lu H., Chandran K., Richardson D., Yuan Z. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Water Res. 2015;71:21–31. PubMed
Chen J., Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta. 2013;1827:136–144. doi: 10.1016/j.bbabio.2012.10.002. PubMed DOI
Ji B., Yang K., Zhu L., Jiang Y., Wang H.Y., Zhou J., Zhang H.N. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess. Eng. 2015;20:643–651. doi: 10.1007/s12257-015-0009-0. DOI
Baker S.C., Ferguson S.J., Ludwig B., Page M.D., Richter O.M., van Spanning R.J. Molecular genetics of the genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 1998;62:1046–1078. doi: 10.1128/MMBR.62.4.1046-1078.1998. PubMed DOI PMC
Ferguson S.J. Paracoccus denitrificans Oxidative Phosphorylation: Retentions, Gains, Losses, and Lessons En Route to Mitochondria. IUBMB Life. 2018;70:1214–1221. doi: 10.1002/iub.1962. PubMed DOI
Kaplan P., Kucera I. Cytochromes c-dependent aerobic respiration of Paracoccus denitrificans. J. Basic Microbiol. 1993;33:397–404. doi: 10.1002/jobm.3620330606. DOI
De Gier J.W.L., Lubben M., Reijnders W.N.M., Tipker C.A., Slotboom D.J., van Spanning R.J.M., Stouthamer A.H., Vanderoost J. The terminal oxidases of Paracoccus denitrificans. Mol. Microbiol. 1994;13:183–196. doi: 10.1111/j.1365-2958.1994.tb00414.x. PubMed DOI
Richter O.M., Tao J.S., Turba A., Ludwig B. A cytochrome ba3 functions as a quinol oxidase in Paracoccus denitrificans. Purification, cloning, and sequence comparison. J. Biol. Chem. 1994;269:23079–23086. PubMed
Pitcher R.S., Watmough N.J. The bacterial cytochrome cbb3 oxidases. Biochim. Biophys. Acta. 2004;1655:388–399. doi: 10.1016/j.bbabio.2003.09.017. PubMed DOI
Arai H., Kawakami T., Osamura T., Hirai T., Sakai Y., Ishii M. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J. Bacteriol. 2014;196:4206–4215. doi: 10.1128/JB.02176-14. PubMed DOI PMC
Tiedje J.M., Sexstone A.J., Parkin T.B., Revsbech N.P., Shelton D.R. Anaerobic processes in soil. Plant Soil. 1984;76:197–212. doi: 10.1007/BF02205580. DOI
Morris R.L., Schmidt T.M. Shallow breathing: Bacterial life at low O2. Nat. Rev. Microbiol. 2013;11:205–212. doi: 10.1038/nrmicro2970. PubMed DOI PMC
De Vries G.E., Harms N., Hoogendijk J., Stouthamer A.H. Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (NGATCN) DNA-modifying property. Arch. Microbiol. 1989;152:52–57. doi: 10.1007/BF00447011. DOI
De Gier J.W.L., Schepper M., Reijnders W.N.M., van Dyck S.J., Slotboom D.J., Warne A., Saraste M., Krab K., Finel M., Stouthamer A.H., et al. Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol. Microbiol. 1996;20:1247–1260. doi: 10.1111/j.1365-2958.1996.tb02644.x. PubMed DOI
Otten M.F., Stork D.R., Reijnders W.N.M., Westerhoff H.V., van Spanning R.J.M. Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur. J. Biochem. 2001;268:2486–2497. doi: 10.1046/j.1432-1327.2001.02131.x. PubMed DOI
Marrs B., Gest H. Genetic mutations affecting respiratory electron-transport system of photosynthetic bacterium Rhodopseudomonas capsulata. J. Bacteriol. 1973;114:1045–1051. doi: 10.1128/JB.114.3.1045-1051.1973. PubMed DOI PMC
Lenski R.E., Rose M.R., Simpson S.C., Tadler S.C. Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2,000 generations. Am. Nat. 1991;138:1315–1341. doi: 10.1086/285289. DOI
Wijtzes T., de Wit J.C., In H., Van’t R., Zwietering M.H. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl. Environ. Microbiol. 1995;61:2533–2539. doi: 10.1128/AEM.61.7.2533-2539.1995. PubMed DOI PMC
Kumar S., Spiro S. Environmental and genetic determinants of biofilm formation in Paracoccus denitrificans. mSphere. 2017;2:e00350. doi: 10.1128/mSphereDirect.00350-17. PubMed DOI PMC
Thomsen J.K., Geest T., Cox R.P. Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Appl. Environ. Microbiol. 1994;60:536–541. doi: 10.1128/AEM.60.2.536-541.1994. PubMed DOI PMC
Gevantman L.H. Solubility of selected gases in water. In: Lide D.R., editor. CRC Handbook of Chemistry and Physics. CRC Press; Boca Raton, FL, USA: 1992. pp. 82–83.
Kim I.S., Jang A., Ivanov V., Stabnikova O., Ulanov M. Denitrification of drinking water using biofilms formed by Paracoccus denitrificans and microbial adhesion. Environ. Eng. Sci. 2004;21:283–290. doi: 10.1089/109287504323066923. DOI
Yoshida K., Toyofuku M., Obana N., Nomura N. Biofilm formation by Paracoccus denitrificans requires a type I secretion system-dependent adhesin BapA. FEMS Microbiol. Lett. 2017;364:fnx029. doi: 10.1093/femsle/fnx029. PubMed DOI
Sousa F.L., Alves R.J., Ribeiro M.A., Pereira-Leal J.B., Teixeira M., Pereira M.M. The superfamily of heme-copper oxygen reductases: Types and evolutionary considerations. Biochim. Biophys. Acta. 2012;1817:629–637. doi: 10.1016/j.bbabio.2011.09.020. PubMed DOI
Rauhamaki V., Wikstrom M. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A. Biochim. Biophys. Acta. 2014;1837:999–1003. doi: 10.1016/j.bbabio.2014.02.020. PubMed DOI
Ducluzeau A.L., Schoepp-Cothenet B., van Lis R., Baymann F., Russell M.J., Nitschke W. The evolution of respiratory O2/NO reductases: An out-of-the-phylogenetic-box perspective. J. R. Soc. Interface. 2014;11:20140196. doi: 10.1098/rsif.2014.0196. PubMed DOI PMC
Xu K.D., Stewart P.S., Xia F., Huang C.T., McFeters G.A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 1998;64:4035–4039. doi: 10.1128/AEM.64.10.4035-4039.1998. PubMed DOI PMC
Alvarez-Ortega C., Harwood C.S. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. 2007;65:153–165. doi: 10.1111/j.1365-2958.2007.05772.x. PubMed DOI PMC
Kucera I., Kozak L., Dadak V. Aerobic dissimilatory reduction of nitrite by cells of Paracoccus denitrificans: The role of nitric oxide. Biochim. Biophys. Acta. 1987;894:120–126. doi: 10.1016/0005-2728(87)90181-2. DOI
Conthe M., Parchen C., Stouten G., Kleerebezem R., van Loosdrecht M.C.M. O2 versus N2O respiration in a continuous microbial enrichment. Appl. Microbiol. Biotechnol. 2018;102:8943–8950. doi: 10.1007/s00253-018-9247-3. PubMed DOI PMC
Zhu G., Peng Y., Li B., Guo J., Yang Q., Wang S. Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 2008;192:159–195. PubMed
Mpongwana N., Ntwampe S.K.O., Omodanisi E.I., Chidi B.S., Razanamahandry L.C. Sustainable approach to eradicate the inhibitory effect of free-cyanide on simultaneous nitrification and aerobic denitrification during wastewater treatment. Sustainability. 2019;11:6180. doi: 10.3390/su11216180. DOI
Demone J.J., Wan S., Nourimand M., Hansen A.E., Shu Q.Y., Altosaar I. New breeding techniques for greenhouse gas (GHG) mitigation: Plants may express nitrous oxide reductase. Climate. 2018;6:80. doi: 10.3390/cli6040080. DOI
Bouchal P., Struharova I., Budinska E., Sedo O., Vyhlidalova T., Zdrahal Z., van Spanning R., Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochim. Biophys. Acta. 2010;1804:1350–1358. doi: 10.1016/j.bbapap.2010.01.016. PubMed DOI
Qu Z., Bakken L.R., Molstad L., Frostegard A., Bergaust L.L. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ. Microbiol. 2016;18:2951–2963. doi: 10.1111/1462-2920.13128. PubMed DOI