Probing the Roughness of Porphyrin Thin Films with X-ray Photoelectron Spectroscopy

. 2020 Oct 16 ; 21 (20) : 2293-2300. [epub] 20200925

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32820833

Grantová podpora
FOR 1878 funCOS - Functional Molecular Structures on Complex Oxide Surfaces Deutsche Forschungsgemeinschaft (DFG)
Argentine National Council of Scientific and Technical Research (CONICET)
DFG
CERIC-ERIC consortium
LM2015057 Czech Ministry of Education

Thin-film growth of molecular systems is of interest for many applications, such as for instance organic electronics. In this study, we demonstrate how X-ray photoelectron spectroscopy (XPS) can be used to study the growth behavior of such molecular systems. In XPS, coverages are often calculated assuming a uniform thickness across a surface. This results in an error for rough films, and the magnitude of this error depends on the kinetic energy of the photoelectrons analyzed. We have used this kinetic-energy dependency to estimate the roughnesses of thin porphyrin films grown on rutile TiO2 (110). We used two different molecules: cobalt (II) monocarboxyphenyl-10,15,20-triphenylporphyrin (CoMCTPP), with carboxylic-acid anchor groups, and cobalt (II) tetraphenylporphyrin (CoTPP), without anchor groups. We find CoMCTPP to grow as rough films at room temperature across the studied coverage range, whereas for CoTPP the first two layers remain smooth and even; depositing additional CoTPP results in rough films. Although, XPS is not a common technique for measuring roughness, it is fast and provides information of both roughness and thickness in one measurement.

Zobrazit více v PubMed

Dimitrakopoulos C. D., Mascaro D. J., IBM J. Res. Dev. 2001, 45, 11–27;

Dimitrakopoulos C. D., Malenfant P. R. L., Adv. Mater. 2002, 14, 99–117;

Ling M. M., Bao Z. N., Chem. Mater. 2004, 16, 4824–4840;

Sirringhaus H., Adv. Mater. 2014, 26, 1319–1335; PubMed PMC

Knipp D., Street R. A., Völkel A., Ho J., J. Appl. Phys. 2003, 93, 347–355.

Kippelen B., Brédas J.-L., Energy Environ. Sci. 2009, 2, 251;

Bauer G., Würfel P. in: Organic Photovoltaics: Concepts and Realization (Eds.: C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci), Springer, Berlin Heidelberg, 2013, 118–158;

Mazzio K. A., Luscombe C. K., Chem. Soc. Rev. 2015, 44, 78–90. PubMed

Dodabalapur A., Solid State Commun. 1997, 102, 259–267;

Sasabe H., Kido J., J. Mater. Chem. C 2013, 1, 1699;

Kulkarni A. P., Tonzola C. J., Babel A., Jenekhe S. A., Chem. Mater. 2004, 16, 4556–4573.

Wang Z., Chang H., Wang T., Wang H., Yan D., J. Phys. Chem. B 2014, 118, 4212–4219; PubMed

Yang H., Shin T. J., Ling M.-M., Cho K., Ryu C. Y., Bao Z., J. Am. Chem. Soc. 2005, 127, 11542–11543; PubMed

Nishiyama F., Yokoyama T., Kamikado T., Yokoyama S., Mashiko S., Appl. Phys. Lett. 2006, 88, 253113.

Kowarik S., Gerlach A., Sellner S., Schreiber F., Cavalcanti L., Konovalov O., Phys. Rev. Lett. 2006, 96, 125504; PubMed

Kafer D., Ruppel L., Witte G., Woll C., Phys. Rev. Lett. 2005, 95, 166602. PubMed

Tersigni A., Shi J., Jiang D. T., Qin X. R., Phys. Rev. B 2006, 74, 205326;

de Oteyza D. G., Barrena E., Sellner S., Ossó J. O., Dosch H., J. Phys. Chem. B 2006, 110, 16618–16623; PubMed

Werner K., Mohr S., Schwarz M., Xu T., Amende M., Döpper T., Görling A., Libuda J., J. Phys. Chem. Lett. 2016, 7, 555–560. PubMed

El-Nahass M. M., Ammar A. H., Farag A. A. M., Atta A. A., El-Zaidia E. F. M., Solid State Sci. 2011, 13, 596–600;

Zeyada H. M., Makhlouf M. M., Ali M. A., Jpn. J. Appl. Phys. 2016, 55, 022601–22608.

Gottfried J. M., Surf. Sci. Rep. 2015, 70, 259–379;

Auwarter W., Ecija D., Klappenberger F., Barth J. V., Nat. Chem. 2015, 7, 105–120. PubMed

Oldacre A. N., Crawley M. R., Friedman A. E., Cook T. R., Chem. Eur. J. 2018, 24, 1–5.

Ishihara S., Labuta J., Van Rossom W., Ishikawa D., Minami K., Hill J. P., Ariga K., Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. PubMed

Jurow M., Schuckman A. E., Batteas J. D., Drain C. M., Coord. Chem. Rev. 2010, 254, 2297–2310; PubMed PMC

Drain C. M., Hupp J. T., Suslick K. S., Wasielewski M. R., Chen X., J. Porphyrins Phthalocyanines 2002, 06, 243–258.

Drain C. M., Varotto A., Radivojevic I., Chem. Rev. 2009, 109, 1630–1658. PubMed PMC

Urbani M., Gratzel M., Nazeeruddin M. K., Torres T., Chem. Rev. 2014, 114, 12330–12396. PubMed

Stark M., Ditze S., Drost M., Buchner F., Steinrück H.-P., Marbach H., Langmuir 2013, 29, 4104–4110; PubMed

Marbach H., Acc. Chem. Res. 2015, 48, 2649–2658; PubMed

Shubina T. E., Marbach H., Flechtner K., Kretschmann A., Jux N., Buchner F., Steinrück H.-P., Clark T., Gottfried J. M., J. Am. Chem. Soc. 2007, 129, 9476–9483; PubMed

Hieringer W., Flechtner K., Kretschmann A., Seufert K., Auwärter W., Barth J. V., Görling A., Steinrück H.-P., Gottfried J. M., J. Am. Chem. Soc. 2011, 133, 6206–6222; PubMed

Diller K., Papageorgiou A. C., Klappenberger F., Allegretti F., Barth J. V., Auwarter W., Chem. Soc. Rev. 2016, 45, 1629–1656; PubMed

Deimel P. S., Bababrik R. M., Wang B., Blowey P. J., Rochford L. A., Thakur P. K., Lee T. L., Bocquet M. L., Barth J. V., Woodruff D. P., Duncan D. A., Allegretti F., Chem. Sci. 2016, 7, 5647–5656; PubMed PMC

Ballav N., Wäckerlin C., Siewert D., Oppeneer P. M., Jung T. A., J. Phys. Chem. Lett. 2013, 4, 2303–2311;

Franke M., Marchini F., Jux N., Steinruck H. P., Lytken O., Williams F. J., Chem. Eur. J. 2016, 22, 8520–8524; PubMed

Wechsler D., Fernández C. C., Steinrück H.-P., Lytken O., Williams F. J., J. Phys. Chem. C 2018, 122, 4480–4487;

Fernández C. C., Wechsler D., Rocha T. C. R., Steinrück H.-P., Lytken O., Williams F. J., Surf. Sci. 2019, 689;

Zajac L., Olszowski P., Godlewski S., Bodek L., Such B., Jöhr R., Pawlak R., Hinaut A., Glatzel T., Meyer E., Szymonski M., Appl. Surf. Sci. 2016, 379, 277–281;

Schneider J., Franke M., Gurrath M., Rockert M., Berger T., Bernardi J., Meyer B., Steinruck H. P., Lytken O., Diwald O., Chem. Eur. J. 2016, 22, 1744–1749; PubMed

Franke M., Wechsler D., Tariq Q., Rockert M., Zhang L., Kumar Thakur P., Tsud N., Bercha S., Prince K., Lee T. L., Steinruck H. P., Lytken O., Phys. Chem. Chem. Phys. 2017, 19, 11549–11553; PubMed

Röckert M., Franke M., Tariq Q., Lungerich D., Jux N., Stark M., Kaftan A., Ditze S., Marbach H., Laurin M., Libuda J., Steinrück H.-P., Lytken O., J. Phys. Chem. C 2014, 118, 26729–26736;

Köbl J., Wang T., Wang C., Drost M., Tu F., Xu Q., Ju H., Wechsler D., Franke M., Pan H., Marbach H., Steinrück H.-P., Zhu J., Lytken O., ChemistrySelect 2016, 1, 6103–6105;

Rockert M., Franke M., Tariq Q., Ditze S., Stark M., Uffinger P., Wechsler D., Singh U., Xiao J., Marbach H., Steinruck H. P., Lytken O., Chem. Eur. J. 2014, 20, 8948–8953; PubMed

Wechsler D., Franke M., Tariq Q., Zhang L., Lee T.-L., Thakur P. K., Tsud N., Bercha S., Prince K. C., Steinrück H.-P., Lytken O., J. Phys. Chem. C 2017, 121, 5667–5674; PubMed

Schneider J., Kollhoff F., Bernardi J., Kaftan A., Libuda J., Berger T., Laurin M., Diwald O., ACS Appl. Mater. Interfaces 2015, 7, 22962–22969; PubMed

Schneider J., Kollhoff F., Schindler T., Bichlmaier S., Bernardi J., Unruh T., Libuda J., Berger T., Diwald O., J. Phys. Chem. C 2016, 120, 26879–26888.

Buchner F., Kellner I., Hieringer W., Gorling A., Steinruck H. P., Marbach H., Phys. Chem. Chem. Phys. 2010, 12, 13082–13090; PubMed

Lee D. C., Morales G. M., Lee Y., Yu L., Chem. Commun. (Camb.) 2006, 100–102. PubMed

Lovat G., Forrer D., Abadia M., Dominguez M., Casarin M., Rogero C., Vittadini A., Floreano L., Phys. Chem. Chem. Phys. 2015, 17, 30119–30124. PubMed

Meyer Zu Heringdorf F.-J., Reuter M. C., Tromp R. M., Nature 2001, 412, 517–520; PubMed

Witte G., Hänel K., Söhnchen S., Wöll C., Appl. Phys. A 2005, 82, 447–455;

Zorba S., Shapir Y., Gao Y., Phys. Rev. B 2006, 74, 245104–245105;

Resel R., Koch N., Meghdadi F., Leising G., Unzog W., Reichmann K., Thin Solid Films 1997, 305, 232–242;

Zhang G., Weeks B. L., Appl. Surf. Sci. 2010, 256, 2363–2366.

Mascaro D. J., Thompson M. E., Smith H. I., Bulović V., Org. Electron. 2005, 6, 211–220.

Häßler-Grohne W., Hüser D., Johnsen K.-P., Frase C. G., Bosse H., Meas. Sci. Technol. 2011, 22, 094003, 1–8.

Kong D., Wang G., Pan Y., Hu S., Hou J., Pan H., Campbell C. T., Zhu J., J. Phys. Chem. C 2011, 115, 6715–6725;

Vearey-Roberts A. R., Steiner H. J., Evans S., Cerrillo I., Mendez J., Cabailh G., O'Brien S., Wells J. W., McGovern I. T., Evans D. A., Appl. Surf. Sci. 2004, 234, 131–137.

Siegbahn K., J. Electron Spectrosc. Relat. Phenom. 1974, 5, 3–97.

M. P. Seah, Surface analysis by Auger and x-ray photoelectron spectroscopy (Eds.:D. B. and J. T. Grant), IMPublications, Manchester, UK, 2003, pp. 345–375.

Powell C. J., Jablonski A., J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 331–346;

Chatelier R. C., St John H. A. W., Gengenbach T. R., Kingshott P., Griesser H. J., Surf. Interface Anal. 1997, 25, 741–746.

Lexow M., Talwar T., Heller B. S. J., May B., Bhuin R. G., Maier F., Steinrück H. P., Phys. Chem. Chem. Phys. 2018, 20, 12929–12938; PubMed PMC

Martín-Concepción A. I., Yubero F., Espinós J. P., Tougaard S., Surf. Interface Anal. 2004, 36, 788–792;

Zemek J., Anal. Sci., 2010, 26, 177–186. PubMed

Fadley C. S., J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 2–32.

Grabau M., Krick Calderón S., Rietzler F., Niedermaier I., Taccardi N., Wasserscheid P., Maier F., Steinrück H.-P., Papp C., Surf. Sci. 2016, 651, 16–21.

Tanuma S., Powell C. J., Penn D. R., Surf. Interface Anal. 2011, 43, 689–713.

Gadelmawla E. S., Koura M. M., Maksoud T. M. A., Elewa I. M., Soliman H. H., J. Mater. Process. Technol. 2002, 123, 133–145.

Palomaki P. K., Krawicz A., Dinolfo P. H., Langmuir, 2011, 27, 4613–4622. PubMed

Kollhoff F., Schneider J., Li G., Barkaoui S., Shen W., Berger T., Diwald O., Libuda J., Phys. Chem. Chem. Phys. 2018, 20, 24858–24868. PubMed

Wahler T., Schuster R., Libuda J., Chem. Eur. J. 2020, 10.1002/chem.202001331. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace