Probing the Roughness of Porphyrin Thin Films with X-ray Photoelectron Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FOR 1878 funCOS - Functional Molecular Structures on Complex Oxide Surfaces
Deutsche Forschungsgemeinschaft (DFG)
Argentine National Council of Scientific and Technical Research (CONICET)
DFG
CERIC-ERIC consortium
LM2015057
Czech Ministry of Education
PubMed
32820833
PubMed Central
PMC7702074
DOI
10.1002/cphc.202000568
Knihovny.cz E-zdroje
- Klíčová slova
- Growth, Porphyrin molecules, Thin films, X-ray photoelectron spectroscopy,
- Publikační typ
- časopisecké články MeSH
Thin-film growth of molecular systems is of interest for many applications, such as for instance organic electronics. In this study, we demonstrate how X-ray photoelectron spectroscopy (XPS) can be used to study the growth behavior of such molecular systems. In XPS, coverages are often calculated assuming a uniform thickness across a surface. This results in an error for rough films, and the magnitude of this error depends on the kinetic energy of the photoelectrons analyzed. We have used this kinetic-energy dependency to estimate the roughnesses of thin porphyrin films grown on rutile TiO2 (110). We used two different molecules: cobalt (II) monocarboxyphenyl-10,15,20-triphenylporphyrin (CoMCTPP), with carboxylic-acid anchor groups, and cobalt (II) tetraphenylporphyrin (CoTPP), without anchor groups. We find CoMCTPP to grow as rough films at room temperature across the studied coverage range, whereas for CoTPP the first two layers remain smooth and even; depositing additional CoTPP results in rough films. Although, XPS is not a common technique for measuring roughness, it is fast and provides information of both roughness and thickness in one measurement.
Zobrazit více v PubMed
Dimitrakopoulos C. D., Mascaro D. J., IBM J. Res. Dev. 2001, 45, 11–27;
Dimitrakopoulos C. D., Malenfant P. R. L., Adv. Mater. 2002, 14, 99–117;
Ling M. M., Bao Z. N., Chem. Mater. 2004, 16, 4824–4840;
Sirringhaus H., Adv. Mater. 2014, 26, 1319–1335; PubMed PMC
Knipp D., Street R. A., Völkel A., Ho J., J. Appl. Phys. 2003, 93, 347–355.
Kippelen B., Brédas J.-L., Energy Environ. Sci. 2009, 2, 251;
Bauer G., Würfel P. in: Organic Photovoltaics: Concepts and Realization (Eds.: C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci), Springer, Berlin Heidelberg, 2013, 118–158;
Mazzio K. A., Luscombe C. K., Chem. Soc. Rev. 2015, 44, 78–90. PubMed
Dodabalapur A., Solid State Commun. 1997, 102, 259–267;
Sasabe H., Kido J., J. Mater. Chem. C 2013, 1, 1699;
Kulkarni A. P., Tonzola C. J., Babel A., Jenekhe S. A., Chem. Mater. 2004, 16, 4556–4573.
Wang Z., Chang H., Wang T., Wang H., Yan D., J. Phys. Chem. B 2014, 118, 4212–4219; PubMed
Yang H., Shin T. J., Ling M.-M., Cho K., Ryu C. Y., Bao Z., J. Am. Chem. Soc. 2005, 127, 11542–11543; PubMed
Nishiyama F., Yokoyama T., Kamikado T., Yokoyama S., Mashiko S., Appl. Phys. Lett. 2006, 88, 253113.
Kowarik S., Gerlach A., Sellner S., Schreiber F., Cavalcanti L., Konovalov O., Phys. Rev. Lett. 2006, 96, 125504; PubMed
Kafer D., Ruppel L., Witte G., Woll C., Phys. Rev. Lett. 2005, 95, 166602. PubMed
Tersigni A., Shi J., Jiang D. T., Qin X. R., Phys. Rev. B 2006, 74, 205326;
de Oteyza D. G., Barrena E., Sellner S., Ossó J. O., Dosch H., J. Phys. Chem. B 2006, 110, 16618–16623; PubMed
Werner K., Mohr S., Schwarz M., Xu T., Amende M., Döpper T., Görling A., Libuda J., J. Phys. Chem. Lett. 2016, 7, 555–560. PubMed
El-Nahass M. M., Ammar A. H., Farag A. A. M., Atta A. A., El-Zaidia E. F. M., Solid State Sci. 2011, 13, 596–600;
Zeyada H. M., Makhlouf M. M., Ali M. A., Jpn. J. Appl. Phys. 2016, 55, 022601–22608.
Gottfried J. M., Surf. Sci. Rep. 2015, 70, 259–379;
Auwarter W., Ecija D., Klappenberger F., Barth J. V., Nat. Chem. 2015, 7, 105–120. PubMed
Oldacre A. N., Crawley M. R., Friedman A. E., Cook T. R., Chem. Eur. J. 2018, 24, 1–5.
Ishihara S., Labuta J., Van Rossom W., Ishikawa D., Minami K., Hill J. P., Ariga K., Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. PubMed
Jurow M., Schuckman A. E., Batteas J. D., Drain C. M., Coord. Chem. Rev. 2010, 254, 2297–2310; PubMed PMC
Drain C. M., Hupp J. T., Suslick K. S., Wasielewski M. R., Chen X., J. Porphyrins Phthalocyanines 2002, 06, 243–258.
Drain C. M., Varotto A., Radivojevic I., Chem. Rev. 2009, 109, 1630–1658. PubMed PMC
Urbani M., Gratzel M., Nazeeruddin M. K., Torres T., Chem. Rev. 2014, 114, 12330–12396. PubMed
Stark M., Ditze S., Drost M., Buchner F., Steinrück H.-P., Marbach H., Langmuir 2013, 29, 4104–4110; PubMed
Marbach H., Acc. Chem. Res. 2015, 48, 2649–2658; PubMed
Shubina T. E., Marbach H., Flechtner K., Kretschmann A., Jux N., Buchner F., Steinrück H.-P., Clark T., Gottfried J. M., J. Am. Chem. Soc. 2007, 129, 9476–9483; PubMed
Hieringer W., Flechtner K., Kretschmann A., Seufert K., Auwärter W., Barth J. V., Görling A., Steinrück H.-P., Gottfried J. M., J. Am. Chem. Soc. 2011, 133, 6206–6222; PubMed
Diller K., Papageorgiou A. C., Klappenberger F., Allegretti F., Barth J. V., Auwarter W., Chem. Soc. Rev. 2016, 45, 1629–1656; PubMed
Deimel P. S., Bababrik R. M., Wang B., Blowey P. J., Rochford L. A., Thakur P. K., Lee T. L., Bocquet M. L., Barth J. V., Woodruff D. P., Duncan D. A., Allegretti F., Chem. Sci. 2016, 7, 5647–5656; PubMed PMC
Ballav N., Wäckerlin C., Siewert D., Oppeneer P. M., Jung T. A., J. Phys. Chem. Lett. 2013, 4, 2303–2311;
Franke M., Marchini F., Jux N., Steinruck H. P., Lytken O., Williams F. J., Chem. Eur. J. 2016, 22, 8520–8524; PubMed
Wechsler D., Fernández C. C., Steinrück H.-P., Lytken O., Williams F. J., J. Phys. Chem. C 2018, 122, 4480–4487;
Fernández C. C., Wechsler D., Rocha T. C. R., Steinrück H.-P., Lytken O., Williams F. J., Surf. Sci. 2019, 689;
Zajac L., Olszowski P., Godlewski S., Bodek L., Such B., Jöhr R., Pawlak R., Hinaut A., Glatzel T., Meyer E., Szymonski M., Appl. Surf. Sci. 2016, 379, 277–281;
Schneider J., Franke M., Gurrath M., Rockert M., Berger T., Bernardi J., Meyer B., Steinruck H. P., Lytken O., Diwald O., Chem. Eur. J. 2016, 22, 1744–1749; PubMed
Franke M., Wechsler D., Tariq Q., Rockert M., Zhang L., Kumar Thakur P., Tsud N., Bercha S., Prince K., Lee T. L., Steinruck H. P., Lytken O., Phys. Chem. Chem. Phys. 2017, 19, 11549–11553; PubMed
Röckert M., Franke M., Tariq Q., Lungerich D., Jux N., Stark M., Kaftan A., Ditze S., Marbach H., Laurin M., Libuda J., Steinrück H.-P., Lytken O., J. Phys. Chem. C 2014, 118, 26729–26736;
Köbl J., Wang T., Wang C., Drost M., Tu F., Xu Q., Ju H., Wechsler D., Franke M., Pan H., Marbach H., Steinrück H.-P., Zhu J., Lytken O., ChemistrySelect 2016, 1, 6103–6105;
Rockert M., Franke M., Tariq Q., Ditze S., Stark M., Uffinger P., Wechsler D., Singh U., Xiao J., Marbach H., Steinruck H. P., Lytken O., Chem. Eur. J. 2014, 20, 8948–8953; PubMed
Wechsler D., Franke M., Tariq Q., Zhang L., Lee T.-L., Thakur P. K., Tsud N., Bercha S., Prince K. C., Steinrück H.-P., Lytken O., J. Phys. Chem. C 2017, 121, 5667–5674; PubMed
Schneider J., Kollhoff F., Bernardi J., Kaftan A., Libuda J., Berger T., Laurin M., Diwald O., ACS Appl. Mater. Interfaces 2015, 7, 22962–22969; PubMed
Schneider J., Kollhoff F., Schindler T., Bichlmaier S., Bernardi J., Unruh T., Libuda J., Berger T., Diwald O., J. Phys. Chem. C 2016, 120, 26879–26888.
Buchner F., Kellner I., Hieringer W., Gorling A., Steinruck H. P., Marbach H., Phys. Chem. Chem. Phys. 2010, 12, 13082–13090; PubMed
Lee D. C., Morales G. M., Lee Y., Yu L., Chem. Commun. (Camb.) 2006, 100–102. PubMed
Lovat G., Forrer D., Abadia M., Dominguez M., Casarin M., Rogero C., Vittadini A., Floreano L., Phys. Chem. Chem. Phys. 2015, 17, 30119–30124. PubMed
Meyer Zu Heringdorf F.-J., Reuter M. C., Tromp R. M., Nature 2001, 412, 517–520; PubMed
Witte G., Hänel K., Söhnchen S., Wöll C., Appl. Phys. A 2005, 82, 447–455;
Zorba S., Shapir Y., Gao Y., Phys. Rev. B 2006, 74, 245104–245105;
Resel R., Koch N., Meghdadi F., Leising G., Unzog W., Reichmann K., Thin Solid Films 1997, 305, 232–242;
Zhang G., Weeks B. L., Appl. Surf. Sci. 2010, 256, 2363–2366.
Mascaro D. J., Thompson M. E., Smith H. I., Bulović V., Org. Electron. 2005, 6, 211–220.
Häßler-Grohne W., Hüser D., Johnsen K.-P., Frase C. G., Bosse H., Meas. Sci. Technol. 2011, 22, 094003, 1–8.
Kong D., Wang G., Pan Y., Hu S., Hou J., Pan H., Campbell C. T., Zhu J., J. Phys. Chem. C 2011, 115, 6715–6725;
Vearey-Roberts A. R., Steiner H. J., Evans S., Cerrillo I., Mendez J., Cabailh G., O'Brien S., Wells J. W., McGovern I. T., Evans D. A., Appl. Surf. Sci. 2004, 234, 131–137.
Siegbahn K., J. Electron Spectrosc. Relat. Phenom. 1974, 5, 3–97.
M. P. Seah, Surface analysis by Auger and x-ray photoelectron spectroscopy (Eds.:D. B. and J. T. Grant), IMPublications, Manchester, UK, 2003, pp. 345–375.
Powell C. J., Jablonski A., J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 331–346;
Chatelier R. C., St John H. A. W., Gengenbach T. R., Kingshott P., Griesser H. J., Surf. Interface Anal. 1997, 25, 741–746.
Lexow M., Talwar T., Heller B. S. J., May B., Bhuin R. G., Maier F., Steinrück H. P., Phys. Chem. Chem. Phys. 2018, 20, 12929–12938; PubMed PMC
Martín-Concepción A. I., Yubero F., Espinós J. P., Tougaard S., Surf. Interface Anal. 2004, 36, 788–792;
Zemek J., Anal. Sci., 2010, 26, 177–186. PubMed
Fadley C. S., J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 2–32.
Grabau M., Krick Calderón S., Rietzler F., Niedermaier I., Taccardi N., Wasserscheid P., Maier F., Steinrück H.-P., Papp C., Surf. Sci. 2016, 651, 16–21.
Tanuma S., Powell C. J., Penn D. R., Surf. Interface Anal. 2011, 43, 689–713.
Gadelmawla E. S., Koura M. M., Maksoud T. M. A., Elewa I. M., Soliman H. H., J. Mater. Process. Technol. 2002, 123, 133–145.
Palomaki P. K., Krawicz A., Dinolfo P. H., Langmuir, 2011, 27, 4613–4622. PubMed
Kollhoff F., Schneider J., Li G., Barkaoui S., Shen W., Berger T., Diwald O., Libuda J., Phys. Chem. Chem. Phys. 2018, 20, 24858–24868. PubMed
Wahler T., Schuster R., Libuda J., Chem. Eur. J. 2020, 10.1002/chem.202001331. PubMed