Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0110/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0419/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
32824335
PubMed Central
PMC7475912
DOI
10.3390/ma13163619
PII: ma13163619
Knihovny.cz E-zdroje
- Klíčová slova
- biosorption, cobalt, magnetic biosorbent, microwave synthesis, reusability, thioflavin T,
- Publikační typ
- časopisecké články MeSH
Microwave synthesized iron oxide nanoparticles and microparticles were used to prepare a magnetically responsive biosorbent from Rhytidiadelphus squarrosus moss for the rapid and efficient removal of Co2+ ions and thioflavin T (TT). The biocomposite was extensively characterized using Fourier transformed infrared (FTIR), XRD, SEM, and EDX techniques. The magnetic biocomposite showed very good adsorption properties toward Co2+ ions and TT e.g., rapid kinetics, high adsorption capacity (218 μmol g-1 for Co and 483 μmol g-1 for TT), fast magnetic separation, and good reusability in four successive adsorption-desorption cycles. Besides the electrostatic attraction between the oxygen functional moieties of the biomass surface and both Co2+ and TT ions, synergistic interaction with the -FeOH groups of iron oxides also participates in adsorption. The obtained results indicate that the magnetically responsive biocomposite can be a suitable, easily separable, and recyclable biosorbent for water purification.
Zobrazit více v PubMed
Shah A.I., Dar M.U.D., Bhat R.A., Singh J., Singh K., Bhat S.A. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol. Eng. 2020;152:105882. doi: 10.1016/j.ecoleng.2020.105882. DOI
Mullerova S., Baldikova E., Prochazkova J., Pospiskova K., Safarik I. Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal. Mater. Chem. Phys. 2019;225:174–180. doi: 10.1016/j.matchemphys.2018.12.074. DOI
Beni A.A., Esmaeili A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov. 2020;17:100503. doi: 10.1016/j.eti.2019.100503. DOI
Escudero L.B., Quintas P.Y., Wuilloud R.G., Dotto G.L. Recent advances on elemental biosorption. Environ. Chem. Lett. 2019;17:409–427. doi: 10.1007/s10311-018-0816-6. DOI
De Freitas G.R., Da Silva M.G.C., Vieira M.G.A. Biosorption technology for removal of toxic metals: A review of commercial biosorbents and patents. Environ. Sci. Pollut. Res. 2019;26:19097–19118. doi: 10.1007/s11356-019-05330-8. PubMed DOI
Mahamadi C. Will nano-biosorbents break the Achilles’ heel of biosorption technology? Environ. Chem. Lett. 2019;17:1753–1768. doi: 10.1007/s10311-019-00909-6. DOI
Gan P.P., Li S.F.Y. Biosorption of elements. In: Hunt A., editor. Elements Recovery and Sustainability. Royal Society of Chemistry; Cambridge, UK: 2013. pp. 80–113.
Liu X., Tian J., Li Y., Sun N., Mi S., Xie Y., Chen Z. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J. Hazard. Mater. 2019;373:397–407. doi: 10.1016/j.jhazmat.2019.03.103. PubMed DOI
Hassan M., Naidu R., Du J., Liu Y., Qi F. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Sci. Total Environ. 2020;702:134893. doi: 10.1016/j.scitotenv.2019.134893. PubMed DOI
Sharma R., Sarswat A., Pittman C.U., Mohan D. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Adv. 2017;7:8606–8624. doi: 10.1039/C6RA25295H. DOI
Daneshfozoun S., Abdullah M., Abdullah B. Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crop. Prod. 2017;105:93–103. doi: 10.1016/j.indcrop.2017.05.011. DOI
Trakal L., Veselská V., Šafařík I., Vítková M., Číhalová S., Komárek M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056. PubMed DOI
Adeogun A.I., Akande J.A., Idowu M.A., Kareem S.O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: Isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019;9:160. doi: 10.1007/s13201-019-1037-2. DOI
El-Sheikh A.H., Shudayfat A.M., Fasfous I.I. Preparation of magnetic biosorbents based on cypress wood that was pretreated by heating or TiO2 deposition. Ind. Crop. Prod. 2019;129:105–113. doi: 10.1016/j.indcrop.2018.11.074. DOI
Chen C., Tang Y., Liu Y., Liang Y., Zhang K., Wang S., Liang Y. Effect of competitive adsorption on zinc removal from aqueous solution and zinc smelting effluent by eucalyptus leaf-based magnetic biosorbent. J. Environ. Sci. Health Part A. 2017;16:1–17. doi: 10.1080/10934529.2017.1316168. PubMed DOI
Safarik I., Šafaříková M. One-step magnetic modification of non-magnetic solid materials. Int. J. Mater. Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI
Maderova Z., Baldikova E., Pospiskova K., Safarik I., Safarikova M. Removal of dyes by adsorption on magnetically modified activated sludge. Int. J. Environ. Sci. Technol. 2016;13:1653–1664. doi: 10.1007/s13762-016-1001-8. DOI
Winsett J., Moilanen A., Paudel K., Kamali S., Ding K., Cribb W., Seifu D., Neupane S. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Appl. Sci. 2019;1:1636. doi: 10.1007/s42452-019-1699-2. DOI
Baldikova E., Mullerova S., Prochazkova J., Rouskova M., Solcova O., Safarik I., Pospiskova K. Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture. Biomass Convers. Biorefinery. 2019;9:479–488. doi: 10.1007/s13399-018-0362-2. DOI
Su S., Liu Q., Liu J., Zhang H., Li R., Jing X., Wang J. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions. Sci. Rep. 2018;8:793. doi: 10.1038/s41598-017-18698-9. PubMed DOI PMC
Angelova R., Baldikova E., Pospiskova K., Maderova Z., Safarikova M., Šafarík I. Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J. Clean. Prod. 2016;137:189–194. doi: 10.1016/j.jclepro.2016.07.068. DOI
Cao Z., Wang Z., Shang Z., Zhao J.-C. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS ONE. 2017;12:e0172359. doi: 10.1371/journal.pone.0172359. PubMed DOI PMC
Remenárová L., Pipíška M., Horník M., Augustín J. Sorption of cationic dyes from aqueous solutions by moss Rhytidiadelphus squarrosus: Kinetics and equilibrium studies. Nova Biotechnol. 2009;9:53–61.
Marešová J., Pipíška M., Rozložník M., Horník M., Remenárová L., Augustín J. Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination. 2011;266:134–141. doi: 10.1016/j.desal.2010.08.014. DOI
Lei T., Li S.-J., Jiang F., Ren Z.-X., Wang L.-L., Yang X.-J., Tang L.-H., Wang S. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent. Nanoscale Res. Lett. 2019;14:352. doi: 10.1186/s11671-019-3154-0. PubMed DOI PMC
Liu Y., Shen L. A general rate law equation for biosorption. Biochem. Eng. J. 2008;38:390–394. doi: 10.1016/j.bej.2007.08.003. DOI
Fraga T.J.M., da Silva L.F.F., Ferreira L.E.M.d.L., Da Silva M.P., Fraga D.M.d.S.M., de Araújo C.M.B., Carvalho M.N., Cavalcanti J.V.F.d.L., Ghislandi M.G., Sobrinho M.A.d.M. Amino-Fe3O4-functionalized multi-layered graphene oxide as an ecofriendly and highly effective nanoscavenger of the reactive drimaren red. Environ. Sci. Pollut. Res. 2020;27:9718–9732. doi: 10.1007/s11356-019-07539-z. PubMed DOI
Liu Q., Li Y., Chen H., Lu J., Yu G., Möslang M., Zhoub Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020;382:121040. doi: 10.1016/j.jhazmat.2019.121040. PubMed DOI
Pipíška M., Valica M., Partelová D., Horník M., Lesný J., Hostin S. Removal of Synthetic Dyes by Dried Biomass of Freshwater Moss Vesicularia Dubyana: A Batch Biosorption Study. Environments. 2018;5:10. doi: 10.3390/environments5010010. DOI
Partelová D., Šuňovská A., Marešová J., Horník M., Pipíška M., Hostin S. Removal Of Contaminants From Aqueous Solutions Using Hop (Humulus lupulus L.) Agricultural By-Products. Nova Biotechnol. Chim. 2015;14:212–227. doi: 10.1515/nbec-2015-0028. DOI
Remenárová L., Pipíška M., Horník M., Augustín J. Mechanistic evaluation of Co and Zn sorption processes using equilibrium modeling, FTIR and SEM-EDX analysis. Chem. Listy. 2010;104:722–728.
Shin W.S. Competitive sorption of anionic and cationic dyes onto cetylpyridinium-modified montmorillonite. J. Environ. Sci. Health Part A. 2008;43:1459–1470. doi: 10.1080/10934520802232337. PubMed DOI
Maurya N., Mittal A.K. Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal biomass. Int. J. Environ. Technol. Manag. 2011;14:282–293. doi: 10.1504/IJETM.2011.039275. DOI
Lian G., Zhang X., Zhang S., Liu D., Cui D., Wang Q. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ. Sci. 2012;5:7072–7080. doi: 10.1039/c2ee03240f. DOI
Hashemian S., Saffari H., Ragabion S. Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water Air Soil Pollut. 2015;226:2212. doi: 10.1007/s11270-014-2212-6. DOI
Motl A., Šebesta F., Navratil J.D., Hlavicova J. Sorption of cobalt on magnetite. Czechoslov. J. Phys. 2003;53:A515–A523. doi: 10.1007/s10582-003-0066-z. DOI
Zhong Q.-Q., Zhao Y.-Q., Shen L., Hao B., Xu X., Gao B.-Y., Shang Y.-N., Chu K.-Z., Zhang X.-H., Yue Q.-Y. Single and binary competitive adsorption of cobalt and nickel onto novel magnetic composites derived from green macroalgae. Environ. Eng. Sci. 2020;37:188–200. doi: 10.1089/ees.2019.0305. DOI
Hymavathi D., Prabhakar G. Studies on the removal of Cobalt(II) from aqueous solutions by adsorption withFicus benghalensisleaf powder through response surface methodology. Chem. Eng. Commun. 2017;204:1401–1411. doi: 10.1080/00986445.2017.1365063. DOI
Popper Z.A., Fry S.C. Primary Cell Wall Composition of Bryophytes and Charophytes. Ann. Bot. 2003;91:1–12. doi: 10.1093/aob/mcg013. PubMed DOI PMC
Zhang J., Lin S., Han M., Su Q., Xia L., Hui Z. Adsorption Properties of Magnetic Magnetite Nanoparticle for Coexistent Cr(VI) and Cu(II) in Mixed Solution. Water. 2020;12:446. doi: 10.3390/w12020446. DOI
Sulatskaya A.I., Maskevich A.A., Kuznetsova I.M., Uversky V.N., Turoverov K.K. Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils. PLoS ONE. 2010;5:e15385. doi: 10.1371/journal.pone.0015385. PubMed DOI PMC
Songsaeng S., Thamyongkit P., Poompradub S. Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. J. Adv. Res. 2019;20:79–89. doi: 10.1016/j.jare.2019.05.007. PubMed DOI PMC
Wang S.-J., Guo W., Gao F., Wang Y., Gao Y. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv. 2018;8:13205–13217. doi: 10.1039/C7RA13540H. PubMed DOI PMC
Philben M., Butler S., Billings S.A., Benner R., Edwards K.A., Ziegler S.E. Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues. Biogeosciences. 2018;15:6731–6746. doi: 10.5194/bg-15-6731-2018. DOI