Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal

. 2020 Aug 16 ; 13 (16) : . [epub] 20200816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32824335

Grantová podpora
1/0110/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0419/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Microwave synthesized iron oxide nanoparticles and microparticles were used to prepare a magnetically responsive biosorbent from Rhytidiadelphus squarrosus moss for the rapid and efficient removal of Co2+ ions and thioflavin T (TT). The biocomposite was extensively characterized using Fourier transformed infrared (FTIR), XRD, SEM, and EDX techniques. The magnetic biocomposite showed very good adsorption properties toward Co2+ ions and TT e.g., rapid kinetics, high adsorption capacity (218 μmol g-1 for Co and 483 μmol g-1 for TT), fast magnetic separation, and good reusability in four successive adsorption-desorption cycles. Besides the electrostatic attraction between the oxygen functional moieties of the biomass surface and both Co2+ and TT ions, synergistic interaction with the -FeOH groups of iron oxides also participates in adsorption. The obtained results indicate that the magnetically responsive biocomposite can be a suitable, easily separable, and recyclable biosorbent for water purification.

Zobrazit více v PubMed

Shah A.I., Dar M.U.D., Bhat R.A., Singh J., Singh K., Bhat S.A. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol. Eng. 2020;152:105882. doi: 10.1016/j.ecoleng.2020.105882. DOI

Mullerova S., Baldikova E., Prochazkova J., Pospiskova K., Safarik I. Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal. Mater. Chem. Phys. 2019;225:174–180. doi: 10.1016/j.matchemphys.2018.12.074. DOI

Beni A.A., Esmaeili A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov. 2020;17:100503. doi: 10.1016/j.eti.2019.100503. DOI

Escudero L.B., Quintas P.Y., Wuilloud R.G., Dotto G.L. Recent advances on elemental biosorption. Environ. Chem. Lett. 2019;17:409–427. doi: 10.1007/s10311-018-0816-6. DOI

De Freitas G.R., Da Silva M.G.C., Vieira M.G.A. Biosorption technology for removal of toxic metals: A review of commercial biosorbents and patents. Environ. Sci. Pollut. Res. 2019;26:19097–19118. doi: 10.1007/s11356-019-05330-8. PubMed DOI

Mahamadi C. Will nano-biosorbents break the Achilles’ heel of biosorption technology? Environ. Chem. Lett. 2019;17:1753–1768. doi: 10.1007/s10311-019-00909-6. DOI

Gan P.P., Li S.F.Y. Biosorption of elements. In: Hunt A., editor. Elements Recovery and Sustainability. Royal Society of Chemistry; Cambridge, UK: 2013. pp. 80–113.

Liu X., Tian J., Li Y., Sun N., Mi S., Xie Y., Chen Z. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J. Hazard. Mater. 2019;373:397–407. doi: 10.1016/j.jhazmat.2019.03.103. PubMed DOI

Hassan M., Naidu R., Du J., Liu Y., Qi F. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Sci. Total Environ. 2020;702:134893. doi: 10.1016/j.scitotenv.2019.134893. PubMed DOI

Sharma R., Sarswat A., Pittman C.U., Mohan D. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Adv. 2017;7:8606–8624. doi: 10.1039/C6RA25295H. DOI

Daneshfozoun S., Abdullah M., Abdullah B. Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crop. Prod. 2017;105:93–103. doi: 10.1016/j.indcrop.2017.05.011. DOI

Trakal L., Veselská V., Šafařík I., Vítková M., Číhalová S., Komárek M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056. PubMed DOI

Adeogun A.I., Akande J.A., Idowu M.A., Kareem S.O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: Isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019;9:160. doi: 10.1007/s13201-019-1037-2. DOI

El-Sheikh A.H., Shudayfat A.M., Fasfous I.I. Preparation of magnetic biosorbents based on cypress wood that was pretreated by heating or TiO2 deposition. Ind. Crop. Prod. 2019;129:105–113. doi: 10.1016/j.indcrop.2018.11.074. DOI

Chen C., Tang Y., Liu Y., Liang Y., Zhang K., Wang S., Liang Y. Effect of competitive adsorption on zinc removal from aqueous solution and zinc smelting effluent by eucalyptus leaf-based magnetic biosorbent. J. Environ. Sci. Health Part A. 2017;16:1–17. doi: 10.1080/10934529.2017.1316168. PubMed DOI

Safarik I., Šafaříková M. One-step magnetic modification of non-magnetic solid materials. Int. J. Mater. Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI

Maderova Z., Baldikova E., Pospiskova K., Safarik I., Safarikova M. Removal of dyes by adsorption on magnetically modified activated sludge. Int. J. Environ. Sci. Technol. 2016;13:1653–1664. doi: 10.1007/s13762-016-1001-8. DOI

Winsett J., Moilanen A., Paudel K., Kamali S., Ding K., Cribb W., Seifu D., Neupane S. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Appl. Sci. 2019;1:1636. doi: 10.1007/s42452-019-1699-2. DOI

Baldikova E., Mullerova S., Prochazkova J., Rouskova M., Solcova O., Safarik I., Pospiskova K. Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture. Biomass Convers. Biorefinery. 2019;9:479–488. doi: 10.1007/s13399-018-0362-2. DOI

Su S., Liu Q., Liu J., Zhang H., Li R., Jing X., Wang J. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions. Sci. Rep. 2018;8:793. doi: 10.1038/s41598-017-18698-9. PubMed DOI PMC

Angelova R., Baldikova E., Pospiskova K., Maderova Z., Safarikova M., Šafarík I. Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J. Clean. Prod. 2016;137:189–194. doi: 10.1016/j.jclepro.2016.07.068. DOI

Cao Z., Wang Z., Shang Z., Zhao J.-C. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS ONE. 2017;12:e0172359. doi: 10.1371/journal.pone.0172359. PubMed DOI PMC

Remenárová L., Pipíška M., Horník M., Augustín J. Sorption of cationic dyes from aqueous solutions by moss Rhytidiadelphus squarrosus: Kinetics and equilibrium studies. Nova Biotechnol. 2009;9:53–61.

Marešová J., Pipíška M., Rozložník M., Horník M., Remenárová L., Augustín J. Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination. 2011;266:134–141. doi: 10.1016/j.desal.2010.08.014. DOI

Lei T., Li S.-J., Jiang F., Ren Z.-X., Wang L.-L., Yang X.-J., Tang L.-H., Wang S. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent. Nanoscale Res. Lett. 2019;14:352. doi: 10.1186/s11671-019-3154-0. PubMed DOI PMC

Liu Y., Shen L. A general rate law equation for biosorption. Biochem. Eng. J. 2008;38:390–394. doi: 10.1016/j.bej.2007.08.003. DOI

Fraga T.J.M., da Silva L.F.F., Ferreira L.E.M.d.L., Da Silva M.P., Fraga D.M.d.S.M., de Araújo C.M.B., Carvalho M.N., Cavalcanti J.V.F.d.L., Ghislandi M.G., Sobrinho M.A.d.M. Amino-Fe3O4-functionalized multi-layered graphene oxide as an ecofriendly and highly effective nanoscavenger of the reactive drimaren red. Environ. Sci. Pollut. Res. 2020;27:9718–9732. doi: 10.1007/s11356-019-07539-z. PubMed DOI

Liu Q., Li Y., Chen H., Lu J., Yu G., Möslang M., Zhoub Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020;382:121040. doi: 10.1016/j.jhazmat.2019.121040. PubMed DOI

Pipíška M., Valica M., Partelová D., Horník M., Lesný J., Hostin S. Removal of Synthetic Dyes by Dried Biomass of Freshwater Moss Vesicularia Dubyana: A Batch Biosorption Study. Environments. 2018;5:10. doi: 10.3390/environments5010010. DOI

Partelová D., Šuňovská A., Marešová J., Horník M., Pipíška M., Hostin S. Removal Of Contaminants From Aqueous Solutions Using Hop (Humulus lupulus L.) Agricultural By-Products. Nova Biotechnol. Chim. 2015;14:212–227. doi: 10.1515/nbec-2015-0028. DOI

Remenárová L., Pipíška M., Horník M., Augustín J. Mechanistic evaluation of Co and Zn sorption processes using equilibrium modeling, FTIR and SEM-EDX analysis. Chem. Listy. 2010;104:722–728.

Shin W.S. Competitive sorption of anionic and cationic dyes onto cetylpyridinium-modified montmorillonite. J. Environ. Sci. Health Part A. 2008;43:1459–1470. doi: 10.1080/10934520802232337. PubMed DOI

Maurya N., Mittal A.K. Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal biomass. Int. J. Environ. Technol. Manag. 2011;14:282–293. doi: 10.1504/IJETM.2011.039275. DOI

Lian G., Zhang X., Zhang S., Liu D., Cui D., Wang Q. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ. Sci. 2012;5:7072–7080. doi: 10.1039/c2ee03240f. DOI

Hashemian S., Saffari H., Ragabion S. Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water Air Soil Pollut. 2015;226:2212. doi: 10.1007/s11270-014-2212-6. DOI

Motl A., Šebesta F., Navratil J.D., Hlavicova J. Sorption of cobalt on magnetite. Czechoslov. J. Phys. 2003;53:A515–A523. doi: 10.1007/s10582-003-0066-z. DOI

Zhong Q.-Q., Zhao Y.-Q., Shen L., Hao B., Xu X., Gao B.-Y., Shang Y.-N., Chu K.-Z., Zhang X.-H., Yue Q.-Y. Single and binary competitive adsorption of cobalt and nickel onto novel magnetic composites derived from green macroalgae. Environ. Eng. Sci. 2020;37:188–200. doi: 10.1089/ees.2019.0305. DOI

Hymavathi D., Prabhakar G. Studies on the removal of Cobalt(II) from aqueous solutions by adsorption withFicus benghalensisleaf powder through response surface methodology. Chem. Eng. Commun. 2017;204:1401–1411. doi: 10.1080/00986445.2017.1365063. DOI

Popper Z.A., Fry S.C. Primary Cell Wall Composition of Bryophytes and Charophytes. Ann. Bot. 2003;91:1–12. doi: 10.1093/aob/mcg013. PubMed DOI PMC

Zhang J., Lin S., Han M., Su Q., Xia L., Hui Z. Adsorption Properties of Magnetic Magnetite Nanoparticle for Coexistent Cr(VI) and Cu(II) in Mixed Solution. Water. 2020;12:446. doi: 10.3390/w12020446. DOI

Sulatskaya A.I., Maskevich A.A., Kuznetsova I.M., Uversky V.N., Turoverov K.K. Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils. PLoS ONE. 2010;5:e15385. doi: 10.1371/journal.pone.0015385. PubMed DOI PMC

Songsaeng S., Thamyongkit P., Poompradub S. Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. J. Adv. Res. 2019;20:79–89. doi: 10.1016/j.jare.2019.05.007. PubMed DOI PMC

Wang S.-J., Guo W., Gao F., Wang Y., Gao Y. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv. 2018;8:13205–13217. doi: 10.1039/C7RA13540H. PubMed DOI PMC

Philben M., Butler S., Billings S.A., Benner R., Edwards K.A., Ziegler S.E. Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues. Biogeosciences. 2018;15:6731–6746. doi: 10.5194/bg-15-6731-2018. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...