Lipid Profiling in Epicardial and Subcutaneous Adipose Tissue of Patients with Coronary Artery Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- coronary artery disease, epicardial adipose tissue, lipidomics, subcutaneous adipose tissue, type 2 diabetes mellitus,
- MeSH
- diabetes mellitus 2. typu * MeSH
- lidé MeSH
- lipidy MeSH
- nemoci koronárních tepen * MeSH
- perikard MeSH
- podkožní tuk MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
Coronary artery disease is one of the most frequent causes of morbidity and mortality worldwide. It is even more prevalent in patients with type 2 diabetes mellitus who suffer from obesity and increased accumulation of epicardial fat with a possible contributing role in the development of coronary artery disease. We performed an MS-based lipidomic analysis of subcutaneous and epicardial adipose tissue in 23 patients with coronary artery disease stratified for the presence/absence of type 2 diabetes mellitus and a control group of 13 subjects aiming at identification of factors from epicardial fat contributing to the development of coronary artery disease. The samples of adipose tissues were obtained during elective cardiac surgery. They were extracted and analyzed with and without previous triacylglycerols separation by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Multivariate and univariate analyses were performed. Lipidomics data were correlated with biochemical parameters. We identified multiple changes in monoacylglycerols, diacylglycerols, triacylglycerols, glycerophosphatidylserines, glycerophosphatidylethanolamines, glycerophosphatidylcholines, ceramides, sphingomyelins, and derivatives of cholesterol. Observed changes included molecules with fatty acids with odd (15:0, 15:1, 17:0, 17:1) and even (10:0, 12:0, 14:0, 16:0, 16:1, 18:0, 18:1, 18:2, 20:4, 20:1, 22:0) fatty acids in both types of adipose tissue. More pronounced changes were detected in epicardial adipose tissue compared to subcutaneous adipose tissue of patients with coronary artery disease and type 2 diabetes. Lipidomic analysis of subcutaneous and epicardial adipose tissue revealed different profiles for patients with coronary artery disease and type 2 diabetes, which might be related to coronary artery disease and the presence of type 2 diabetes.
Faculty of Applied Sciences University of West Bohemia Univerzitní 8 306 14 Plzeň Czech Republic
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
Citace poskytuje Crossref.org