• This record comes from PubMed

Physicochemical Characterization, Molecular Docking, and In Vitro Dissolution of Glimepiride-Captisol Inclusion Complexes

. 2020 Aug 18 ; 5 (32) : 19968-19977. [epub] 20200804

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

This present study investigated the effect of Captisol, a chemically modified cyclodextrin, on the in vitro dissolution of glimepiride. We prepared glimepiride-Captisol complexes of different mass ratios (1:1, 1:2, and 1:3 w/w) by a physical mixing or freeze-drying technique, and found that complexation with Captisol enhanced the water solubility of glimepiride. Molecular docking and dynamic simulation predicted complex formation; at the same time, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, and scanning electron microscope indicated molecular interactions that support complexation. We also found that an inclusion complex was better than a physical mixture in enhancing the complexation of glimepiride with Captisol and enhancing water solubility. Phase solubility study of the glimepiride-Captisol complex showed an AL-type profile, implying the formation of a 1:1 inclusion complex. The study also revealed that pH influenced the stability of the complex because the stability constant of the glimepiride-Captisol complex was higher in distilled water of pH ∼6.0 than in phosphate buffer of pH 7.2.

See more in PubMed

Davis S. N. The Role of Glimepiride in the Effective Management of Type 2 Diabetes. J. Diabetes Complications 2004, 18, 367–376. 10.1016/j.jdiacomp.2004.07.001. PubMed DOI

Sharma D.Solubility Enhancement Strategies for Poorly Water-Soluble Drugs in Solid Dispersions: A Review. Asian J. Pharm. 2016, 1.

Khadka P.; Ro J.; Kim H.; Kim I.; Kim J. T.; Kim H.; Cho J. M.; Yun G.; Lee J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. 10.1016/j.ajps.2014.05.005. DOI

Davis M. E.; Brewster M. E. Cyclodextrin-Based Pharmaceutics: Past, Present and Future. Nat. Rev. Drug Discovery 2004, 3, 1023–1035. 10.1038/nrd1576. PubMed DOI

Guyot M.; Fawaz F.; Bildet J.; Bonini F.; Lagueny A.-M. Physicochemical Characterization and Dissolution of Norfloxacin/Cyclodextrin Inclusion Compounds and PEG Solid Dispersions. Int. J. Pharm. 1995, 123, 53–63. 10.1016/0378-5173(95)00039-L. DOI

Paulidou A.; Maffeo D.; Yannakopoulou K.; Mavridis I. M. Similar Modes of Inclusion in Complexes of β-Cyclodextrin with Sulfonylurea Hypoglycemic Drugs. Cryst. Eng. Commun. 2010, 12, 517–525. 10.1039/B908128C. DOI

Iwata M.; Fukami T.; Kawashima D.; Sakai M.; Furuishi T.; Suzuki T.; Tomono K.; Ueda H. Effectiveness of Mechanochemical Treatment with Cyclodextrins on Increasing Solubility of Glimepiride. Die Pharmazie: Int. J. Pharm. Sci. 2009, 64, 390–394. 10.1691/ph.2009.9045. PubMed DOI

Ammar H. O.; Salama H. A.; Ghorab M.; Mahmoud A. A. Formulation and Biological Evaluation of Glimepiride–Cyclodextrin–Polymer Systems. Int. J. Pharm. 2006, 309, 129–138. 10.1016/j.ijpharm.2005.11.024. PubMed DOI

Ammar H. O.; Salama H. A.; Ghorab M.; Mahmoud A. A. Inclusion Complexation of Glimepiride in Dimethyl-β-Cyclodextrin. Asian J. Pharm. Sci. 2007, 2, 44–55.

Ammar H.; Salama H.; Ghorab M.; Mahmoud A. Implication of Inclusion Complexation of Glimepiride in Cyclodextrin–Polymer Systems on Its Dissolution, Stability and Therapeutic Efficacy. Int. J. Pharm. 2006, 320, 53–57. 10.1016/j.ijpharm.2006.04.002. PubMed DOI

Aldawsari H.; Altaf A.; Banjar Z.; Okubo M.; Iohara D.; Anraku M.; Hirayama F.; Uekama K. Combined Use of Cyclodextrins and Hydroxypropylmethylcellulose Stearoxy Ether (Sangelose®) for the Preparation of Orally Disintegrating Tablets of Type-2 Antidiabetes Agent Glimepiride. J. Inclusion Phenom. Macrocyclic Chem. 2014, 80, 61–67. 10.1007/s10847-014-0386-6. DOI

Brewster M. E.; Vandecruys R.; Peeters J.; Neeskens P.; Verreck G.; Loftsson T. Comparative Interaction of 2-Hydroxypropyl-β-Cyclodextrin and Sulfobutylether-β-Cyclodextrin with Itraconazole: Phase-Solubility Behavior and Stabilization of Supersaturated Drug Solutions. Eur. J. Pharm. Sci. 2008, 34, 94–103. 10.1016/j.ejps.2008.02.007. PubMed DOI

Lockwood S. F.; O’Malley S.; Mosher G. L. Improved Aqueous Solubility of Crystalline Astaxanthin (3, 3′-dihydroxy-β, Β-carotene-4, 4′-dione) by Captisol®(Sulfobutyl Ether Β-cyclodextrin). J. Pharm. Sci. 2003, 92, 922–926. 10.1002/jps.10359. PubMed DOI

Rowe E. S.; Rowe V. D.; Biswas S.; Mosher G.; Insisienmay L.; Ozias M. K.; Gralinski M. R.; Hunter J.; Barnett J. S. Preclinical Studies of a Kidney Safe Iodinated Contrast Agent. J. Neuroimaging 2016, 26, 511–518. 10.1111/jon.12356. PubMed DOI PMC

Das S. K.; Kahali N.; Bose A.; Khanam J. Physicochemical Characterization and in Vitro Dissolution Performance of Ibuprofen-Captisol®(Sulfobutylether Sodium Salt of β-CD) Inclusion Complexes. J. Mol. Liq. 2018, 261, 239–249. 10.1016/j.molliq.2018.04.007. DOI

Singh R.; Chen J.; Miller T.; Bergren M.; Mallik R. Solution Stability of Captisol-Stabilized Melphalan (Evomela) versus Propylene Glycol-Based Melphalan Hydrochloride Injection. Pharm. Dev. Technol. 2018, 23, 1024–1029. 10.1080/10837450.2016.1265557. PubMed DOI

Fukuda M.; Miller D. A.; Peppas N. A.; McGinity J. W. Influence of Sulfobutyl Ether β-Cyclodextrin (Captisol®) on the Dissolution Properties of a Poorly Soluble Drug from Extrudates Prepared by Hot-Melt Extrusion. Int. J. Pharm. 2008, 350, 188–196. 10.1016/j.ijpharm.2007.08.038. PubMed DOI

Beig A.; Agbaria R.; Dahan A. The Use of Captisol (SBE7-β-CD) in Oral Solubility-Enabling Formulations: Comparison to HPβCD and the Solubility–Permeability Interplay. Eur. J. Pharm. Sci. 2015, 77, 73–78. 10.1016/j.ejps.2015.05.024. PubMed DOI

Szostak M.; Yao L.; Day V. W.; Powell D. R.; Aubé J. Structural Characterization of N-Protonated Amides: Regioselective N-Activation of Medium-Bridged Twisted Lactams. J. Am. Chem. Soc. 2010, 132, 8836–8837. 10.1021/ja101690u. PubMed DOI PMC

Naveed S.; Qamar H.; Jawaid W.; Bokhari U. Effect of Acid, Base and Time on Different Brands of Glimepiride. Open Access Lib. J. 2014, 1, 1–5.

Schellman J. A. Temperature, Stability, and the Hydrophobic Interaction. Biophys. J. 1997, 73, 2960–2964. 10.1016/S0006-3495(97)78324-3. PubMed DOI PMC

Higuchi T. K. A. C. A Phase Solubility Technique. Adv. Anal. Chem. Instrum. 1965, 4, 117–211.

de Miranda J. C.; Martins T. E. A.; Veiga F.; Ferraz H. G. Cyclodextrins and Ternary Complexes: Technology to Improve Solubility of Poorly Soluble Drugs. Brazilian J. Pharm. Sci. 2011, 47, 665–681. 10.1590/S1984-82502011000400003. DOI

Mura P.; Faucci M. T.; Parrini P. L.; Furlanetto S.; Pinzauti S. Influence of the Preparation Method on the Physicochemical Properties of Ketoprofen–Cyclodextrin Binary Systems. Int. J. Pharm. 1999, 179, 117–128. 10.1016/S0378-5173(98)00390-1. PubMed DOI

Landsberg P. T. Can Entropy and “Order” Increase Together?. Phys. Lett. A 1984, 102, 171–173. 10.1016/0375-9601(84)90934-4. DOI

Loftsson T.; Brewster M. E.; Masson M. Role of Cyclodextrins in Improving Oral Drug Delivery. Am. J. Drug Delivery 2004, 2, 261–275. 10.2165/00137696-200402040-00006. DOI

Mohapatra R.; Mallick S.; Nanda A.; Sahoo R. N.; Pramanik A.; Bose A.; Das D.; Pattnaik L. Analysis of Steady State and Non-Steady State Corneal Permeation of Diclofenac. RSC Adv. 2016, 6, 31976–31987. 10.1039/C6RA03604J. DOI

Kumari R.; Kumar R.; Lynn A.; G_mmpbsa A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Infor. Model. 2014, 54, 1951–1962. 10.1021/ci500020m. PubMed DOI

Venuti V.; Cannavà C.; Cristiano M. C.; Fresta M.; Majolino D.; Paolino D.; Stancanelli R.; Tommasini S.; Ventura C. A. A Characterization Study of Resveratrol/Sulfobutyl Ether-β-Cyclodextrin Inclusion Complex and in Vitro Anticancer Activity. Colloids Surf., B 2014, 115, 22–28. 10.1016/j.colsurfb.2013.11.025. PubMed DOI

Bera H.; Chekuri S.; Sarkar S.; Kumar S.; Muvva N. B.; Mothe S.; Nadimpalli J. Novel Pimozide-β-Cyclodextrin-Polyvinylpyrrolidone Inclusion Complexes for Tourette Syndrome Treatment. J. Mol. Liq. 2016, 215, 135–143. 10.1016/j.molliq.2015.12.054. DOI

Nair A. B.; Attimarad M.; Al-Dhubiab B. E.; Wadhwa J.; Harsha S.; Ahmed M. Enhanced Oral Bioavailability of Acyclovir by Inclusion Complex Using Hydroxypropyl-β-Cyclodextrin. Drug Delivery 2014, 21, 540–547. 10.3109/10717544.2013.853213. PubMed DOI

Badr-Eldin S. M.; Elkheshen S. A.; Ghorab M. M. Inclusion Complexes of Tadalafil with Natural and Chemically Modified β-Cyclodextrins I: Preparation and in-Vitro Evaluation. Eur. J. Pharm. Biopharm. 2008, 70, 819–827. 10.1016/j.ejpb.2008.06.024. PubMed DOI

Kiran T.; Shastri N.; Ramakrishna S.; Sadanandam M. Surface Solid Dispersion of Glimepiride for Enhancement of Dissolution Rate. Int. J. Pharm. Tech. Res. 2009, 1, 822–831.

Pokharkar V.; Khanna A.; Venkatpurwar V.; Dhar S.; Mandpe L. Ternary Complexation of Carvedilol, β-Cyclodextrin and Citric Acid for Mouth-Dissolving Tablet Formulation. Acta Pharm. 2009, 59, 121–132. 10.2478/v10007-009-0001-3. PubMed DOI

Loftsson T.; Brewster M. E. Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. 10.1002/jps.23077. PubMed DOI

Berendsen H. J. C.; van der Spoel D.; van Drunen R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. 10.1016/0010-4655(95)00042-E. DOI

Lindahl E.; Hess B.; Van Der Spoel D. GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis. Mol. Model Annu. 2001, 7, 306–317. 10.1007/s008940100045. DOI

Wang R.; Zhou H.; Siu S. W. I.; Gan Y.; Wang Y.; Ouyang D. Comparison of three molecular simulation approaches for cyclodextrin-ibuprofen complexation. J. Nanomater. 2015, 2015, 193049.10.1155/2015/193049. DOI

Syukri Y.; Fernenda L.; Utami F. R.; Qiftayati I.; Kusuma A. P.; Istikaharah R. Preperation And Characterization Of Β-Cyclodextrin Inclusion Complexes Oral Tablets Containing Poorly Water Soluble Glimipiride Using Freeze Drying Method. Indones. J. Pharm. 2015, 26, 71.10.14499/indonesianjpharm26iss2pp71. DOI

Heng D.; Cutler D. J.; Chan H.-K.; Yun J.; Raper J. A. What Is a Suitable Dissolution Method for Drug Nanoparticles?. Pharm. Res. 2008, 25, 1696–1701. 10.1007/s11095-008-9560-0. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...