Development of Crystallinity of Triclinic Polymorph of Tricalcium Silicate
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FAST-J-20-6257
Brno University of Technology
20-00676S
Grantová Agentura České Republiky
PubMed
32847001
PubMed Central
PMC7504084
DOI
10.3390/ma13173734
PII: ma13173734
Knihovny.cz E-resources
- Keywords
- Scherrer equation, alite, crystallite size, growth rate, triclinic tricalcium silicate,
- Publication type
- Journal Article MeSH
Tricalcium silicate phase is one of the main components of modern Portland cements. One of the major industrial challenges in the field of cement production is mapping the influence of individual clinker minerals and their polymorphs on the properties of industrially produced clinkers. The primary goal of this work is to improve the fundamental knowledge of understanding the process of alite formation and development from a crystallographic point of view. This study focuses on the observation of the crystallization process of triclinic alite during the firing process, which to date has not been thoroughly described. The effects of a wide range of temperatures and sintering periods on crystallinity were assessed on samples fired in platinum crucibles in a laboratory furnace. X-ray analysis-together with calculation of crystallinity using Scherrer's equation-was used for observing the crystallite size changes of T1 alite polymorph. According to the acquired results, among the most technologically and economically advantageous regimes of production of a high-quality triclinic alite is the temperature of 1450 °C and sintering time of two hours. The most significant changes in the crystallite size occurred within the first hour of sintering for the whole investigated temperature range.
See more in PubMed
Zach L., Kunčická L., Růžička P., Kocich R. Design, analysis and verification of a knee joint oncological prosthesis finite element model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI
Kunčická L., Kocich R. Comprehensive characterisation of a newly developed Mg-Dy-Al-Zn-Zr alloy structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Jamali-Zghal N., Lacarrière B., Le Corre O. Metallurgical recycling processes: Sustainability ratios and environmental performance assessment. Resour. Conserv Recycl. 2015;97:66–75. doi: 10.1016/j.resconrec.2015.02.010. DOI
Kocich R., Bojko M., Macháčková A., Klečková Z. Numerical analysis of the tubular heat exchanger designed for co-generating units on the basis of microturbines. Int. J. Heat Mass Transf. 2012;55:5336–5342. doi: 10.1016/j.ijheatmasstransfer.2012.05.050. DOI
Chindaprasirt P., Kasemsiri P., Leekongbub S., Posi P. Durability of concrete containing recycled asphaltic concrete aggregate and high calcium fly ash. Int. J. GEOMATE. 2020;19:8–14. doi: 10.21660/2020.74.5541. DOI
Hökfors B.M.W., Boström D., Viggh E., Backman R. On the phase chemistry of Portland cement clinker. Adv. Cem. Res. 2015;27:50–60. doi: 10.1680/adcr.13.00071. DOI
Michaux M., Nelson E.B., Vidick B. 2 Chemistry and characterization of Portland cement. Dev. Petroleum Sci. 1990;28:2–17.
Bhatty J.I. Role of Minor Elements in Cement Manufacture and Use. Portland Cement Assn; Portland, OR, USA: 1995.
Beretka J., De Vito B., Santoro L., Shermann N., Valenti G.L. Utilisation of industrial wastes and by-products for the synthesis of special cements. Cem. Concr. Res. 1993:1205–1214. doi: 10.1016/0008-8846(93)90181-8. DOI
Beretka J., De Vito B., Santoro L., Shermann N., Valenti G.L. Energy-saving cements obtained from chemical gypsum and other industrial wastes. Waste Manag. 1996;16:231–235. doi: 10.1016/S0956-053X(96)00046-3. DOI
Hint J. Fundamentals of Silicalcite Production (in Russian) Strojizdat; Moscow, Russia: 1962.
Staněk T. The influence of SO3 and MgO on kinetics of alite formation. Procedia Eng. 2016;151:26–33. doi: 10.1016/j.proeng.2016.07.353. DOI
Kondo E.R., Choi S. Mechanism and kinetics of Portland cement formation for an example of the solidstate reaction in the presence of a liquid phase; Proceedings of the 5th International Symposium on the Chemistry of Cement, (ISCC); Tokyo, Japan. 7–11 October 1968; pp. 144–146.
Taylor H.F.W. Cement Chemistry. 2nd ed. Thomas Telford Publishing; London, UK: 1997.
Hewlett P. Lea’s Chemistry of Cement and Concrete. Elsevier; Amsterdam, The Netherlands: 2004.
Staněk T., Sulovský P. The influence of the alite polymorphism on the strength of the Portland cement. Cement Concr. Res. 2002;32:1169–1175. doi: 10.1016/S0008-8846(02)00756-1. DOI
Li X., Ouzia A., Scrivener K. Laboratory synthesis of C3S on the kilogram scale. Cement Concr. Res. 2018;108:201–207. doi: 10.1016/j.cemconres.2018.03.019. DOI
Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer; Berlin/Heidelberg, Germany: 2008. High Energy Milling; pp. 103–132.
Naser M.Z. Properties and material models for modern construction materials at elevated temperatures. Comput. Mater. Sci. 2019;160:16–29. doi: 10.1016/j.commatsci.2018.12.055. DOI
Jeffery J.W. The tricalcium silicate phase; Proceedings of the 3rd ISCC; London, UK. 1954.
Bigare M., Guinier A., Mazieres C., Regourd M., Yannaquis N., Eysbl W., Hahn T.H., Woermann E. Polymorphism of tricalcium silicate and its solid solutions. J. Am. Ceram. Soc. 1967;50:609–619. doi: 10.1111/j.1151-2916.1967.tb15009.x. DOI
Guinier A., Regourd M. Structure of Portland cement minerals; Proceedings of the 5th International Symposium on the Chemistry of Cement, (ISCC); Tokyo, Japan. 7–11 October 1968; pp. 1–41.
Yannaquis N., Regourd M., Mazieres C., Guinier A. Polymorphism of the tricalcium silicate. Bull. Soc. Fr. Mineral. Crystallogr. 1962;36:271–281.
Golovastikov N.I., Matveeva R.G., Belov N.V. Crystal structure of the tricalcium silicate 3CaO.SiO2=C3S. Sov. Phys. Crystallogr. 1975;20:721–729.
Nishi F., Take’uchi Y. The rhombohedral structure of tricalcium silicate at 1200 °C. Zeitschrift für Kristallographie. 1984;168:197–212. doi: 10.1524/zkri.1984.168.1-4.197. DOI
Mumme W.G. Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis. Neues Jahrbuch fuer Mineralogie: Monatshefte. 1995;4:145–160.
De Noirefontaine M.N., Courtial M., Dunstetter F., Gasecki G., Signes-Frehel M. Tricalcium silicate Ca3SiO5 superstructure analysis: A route towards the structure of the M1 polymorph. Zeitschrift für Kristallographie. 2012;227:102–112. doi: 10.1524/zkri.2012.1425. DOI
Maki I., Goto K. Factors influencing the phase constitution of alite in Portland cement clinker. Cement Concr. Res. 1982;12:301–308. doi: 10.1016/0008-8846(82)90078-3. DOI
Maki I., Chromy S. Characterization of the alite phase in Portland cement clinker by microscopy. Il Cemento. 1978;75:252–274.
Wesselsky A., Jensen O.M. Synthesis of pure Portland cement phases. Cement Concr. Res. 2009;39:973–980. doi: 10.1016/j.cemconres.2009.07.013. DOI
Larson A., Dreele R. General Structure Analysis System (GSAS) [(accessed on 26 September 2004)];2004 :86–748. Available online: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf.
Scherrer P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften. Gottingen, Mathematisch-Physikalische Klasse. 1918;2:98–100.
Warren B.E. X-ray Diffraction. Addison-Wesley; Boston, MA, USA: 1969.
Formation, Stability, and Crystallinity of Various Tricalcium Aluminate Polymorphs