Utilization of Digital PCR in Quantity Verification of Plasmid Standards Used in Quantitative PCR
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32850953
PubMed Central
PMC7403525
DOI
10.3389/fmolb.2020.00155
Knihovny.cz E-zdroje
- Klíčová slova
- absolute quantification, digital PCR, qPCR, quantification plasmid standard, quantity verification, real time PCR,
- Publikační typ
- časopisecké články MeSH
Quantitative PCR (qPCR) is a widely used method for nucleic acid quantification of various pathogenic microorganisms. For absolute quantification of microbial load by qPCR, it is essential to create a calibration curve from accurately quantified quantification standards, from which the number of pathogens in a sample is derived. Spectrophotometric measurement of absorbance is a routine method for estimating nucleic acid concentration, however, it may be affected by presence of other potentially contaminating nucleic acids or proteins and salts. Therefore, absorbance measurement is not reliable for estimating the concentration of stock solutions of quantification standards, based on which they are subsequently diluted. In this study, we utilized digital PCR (dPCR) for absolute quantification of qPCR plasmid standards and thus detecting possible discrepancies in the determination of the plasmid DNA number of standards derived from UV spectrophotometry. The concept of dPCR utilization for quantification of standards was applied on 45 qPCR assays using droplet-based and chip-based dPCR platforms. Using dPCR, we found that spectrophotometry overestimated the concentrations of standard stock solutions in the majority of cases. Furthermore, batch-to-batch variation in standard quantity was revealed, as well as quantitative changes in standards over time. Finally, it was demonstrated that droplet-based dPCR is a suitable tool for achieving defined quantity of quantification plasmid standards and ensuring the quantity over time, which is crucial for acquiring homogenous, reproducible and comparable quantitative data by qPCR.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Food and Feed Safety Veterinary Research Institute Brno Czechia
Zobrazit více v PubMed
Alidjinou E. K., Sane F., Lefevre C., Baras A., Moumna I., Engelmann I., et al. . (2017). Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR. Acta Diabetol. 54, 1025–1029. 10.1007/s00592-017-1041-7 PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Chen J., Kadlubar F. F., Chen J. Z. (2007). DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Res. 35, 1377–1388. 10.1093/nar/gkm010 PubMed DOI PMC
Gerdes L., Iwobi A., Busch U., Pecoraro S. (2016). Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol. Detect. Quantif. 7, 9–20. 10.1016/j.bdq.2015.12.003 PubMed DOI PMC
Hindson B. J., Ness K. D., Masquelier D. A., Belgrader P., Heredia N. J., Makarewicz A. J., et al. . (2011). High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. 10.1021/ac202028g PubMed DOI PMC
Hou Y., Zhang H., Miranda L., Lin S. (2010). Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS ONE 5:e9545. 10.1371/journal.pone.0009545 PubMed DOI PMC
Huggett J. F., Foy C. A., Benes V., Emslie K., Garson J. A., Haynes R., et al. . (2013). The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59, 892–902. 10.1373/clinchem.2013.206375 PubMed DOI
Kline M. C., Duewer D. L., Travis J. C., Smith M. V., Redman J. W., Vallone P. M., et al. . (2009). Production and certification of NIST standard reference material 2372 human DNA quantitation standard. Anal. Bioanal. Chem. 394, 1183–1192. 10.1007/s00216-009-2782-0 PubMed DOI
Kralik P., Slana I., Kralova A., Babak V., Whitlock R. H., Pavlik I. (2011). Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 149, 133–138. 10.1016/j.vetmic.2010.10.009 PubMed DOI
Kuypers J., Jerome K. R. (2017). Applications of digital PCR for clinical microbiology. J. Clin. Microbiol. 55, 1621–1628. 10.1128/JCM.00211-17 PubMed DOI PMC
Li X., Wu Y., Zhang L., Cao Y., Li Y., Li J., et al. . (2014). Comparison of three common DNA concentration measurement methods. Anal. Biochem. 451, 18–24. 10.1016/j.ab.2014.01.016 PubMed DOI
Lui Y. L., Tan E. L. (2014). Droplet digital PCR as a useful tool for the quantitative detection of Enterovirus 71. J. Virol. Methods 207, 200–203. 10.1016/j.jviromet.2014.07.014 PubMed DOI
Ma J., Li N., Guarnera M., Jiang F. (2013). Quantification of plasma miRNAs by digital PCR for cancer diagnosis. Biomark. Insights 8, 127–136. 10.4137/BMI.S13154 PubMed DOI PMC
Morisset D., Stebih D., Milavec M., Gruden K., Zel J. (2013). Quantitative analysis of food and feed samples with droplet digital PCR. PLoS ONE 8:e62583. 10.1371/journal.pone.0062583 PubMed DOI PMC
Nicot F., Cazabat M., Lhomme S., Marion O., Saune K., Chiabrando J., et al. . (2016). Quantification of HEV RNA by droplet digital PCR. Viruses 8:233. 10.3390/v8080233 PubMed DOI PMC
Pavsic J., Devonshire A. S., Parkes H., Schimmel H., Foy C. A., Karczmarczyk M., et al. . (2015). Standardization of nucleic acid tests for clinical measurements of bacteria and viruses. J. Clin. Microbiol. 53, 2008–2014. 10.1128/JCM.02136-14 PubMed DOI PMC
Pinheiro L. B., Coleman V. A., Hindson C. M., Herrmann J., Hindson B. J., Bhat S., et al. . (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011. 10.1021/ac202578x PubMed DOI PMC
Porcellato D., Narvhus J., Skeie S. B. (2016). Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. J. Microbiol. Methods 127, 1–6. 10.1016/j.mimet.2016.05.012 PubMed DOI
Roder B., Fruhwirth K., Vogl C., Wagner M., Rossmanith P. (2010). Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J. Clin. Microbiol. 48, 4260–4262. 10.1128/JCM.01230-10 PubMed DOI PMC
Sanders R., Huggett J. F., Bushell C. A., Cowen S., Scott D. J., Foy C. A. (2011). Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83, 6474–6484. 10.1021/ac103230c PubMed DOI
Sivaganesan M., Varma M., Siefring S., Haugland R. (2018). Quantification of plasmid DNA standards for U.S. EPA fecal indicator bacteria qPCR methods by droplet digital PCR analysis. J. Microbiol. Methods 152, 135–142. 10.1016/j.mimet.2018.07.005 PubMed DOI PMC
Smith C. J., Osborn A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6–20. 10.1111/j.1574-6941.2008.00629.x PubMed DOI
Smith C. J., Nedwell D. B., Dong L. F., Osborn A. M. (2006). Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ. Microbiol. 8, 804–815. 10.1111/j.1462-2920.2005.00963.x PubMed DOI
Streets A. M., Huang Y. (2014). Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotechnol. 25, 69–77. 10.1016/j.copbio.2013.08.013 PubMed DOI
Talarico S., Safaeian M., Gonzalez P., Hildesheim A., Herrero R., Porras C., et al. . (2016). Quantitative detection and genotyping of Helicobacter pylori from stool using droplet digital PCR reveals variation in bacterial loads that correlates with caga virulence gene carriage. Helicobacter 21, 325–333. 10.1111/hel.12289 PubMed DOI PMC
Walker D. I., Mcquillan J., Taiwo M., Parks R., Stenton C. A., Morgan H., et al. . (2017). A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water Res. 126, 101–110. 10.1016/j.watres.2017.08.032 PubMed DOI
White R. A., Blainey P. C., Fan H. C., Quake S. R. (2009). Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics 10:116. 10.1186/1471-2164-10-541 PubMed DOI PMC
Zimmermann B. G., Grill S., Holzgreve W., Zhong X. Y., Jackson L. G., Hahn S. (2008). Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat. Diagn. 28, 1087–1093. 10.1002/pd.2150 PubMed DOI