The catalytic domain of the histone methyltransferase NSD2/MMSET is required for the generation of B1 cells in mice
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P01 CA196539
NCI NIH HHS - United States
R01 AI118891
NIAID NIH HHS - United States
PubMed
32862441
PubMed Central
PMC7722058
DOI
10.1002/1873-3468.13903
Knihovny.cz E-zdroje
- Klíčová slova
- B1 cells, MMSET, NSD2, histone methylation,
- MeSH
- analýza přežití MeSH
- B-lymfocyty metabolismus MeSH
- histonlysin-N-methyltransferasa chemie metabolismus MeSH
- histony metabolismus MeSH
- humorální imunita MeSH
- katalytická doména * MeSH
- lysin metabolismus MeSH
- metylace MeSH
- myši inbrední C57BL MeSH
- novorozená zvířata MeSH
- přesmyk imunoglobulinových tříd MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zárodečné centrum lymfatické uzliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- histony MeSH
- lysin MeSH
- WHSC1 protein, mouse MeSH Prohlížeč
Humoral immunity in mammals relies on the function of two developmentally and functionally distinct B-cell subsets-B1 and B2 cells. While B2 cells are responsible for the adaptive response to environmental antigens, B1 cells regulate the production of polyreactive and low-affinity antibodies for innate humoral immunity. The molecular mechanism of B-cell specification into different subsets is understudied. In this study, we identified lysine methyltransferase NSD2 (MMSET/WHSC1) as a critical regulator of B1 cell development. In contrast to its minor impact on B2 cells, deletion of the catalytic domain of NSD2 in primary B cells impairs the generation of B1 lineage. Thus, NSD2, a histone H3 K36 dimethylase, is the first-in-class epigenetic regulator of a B-cell lineage in mice.
Bioinformatics Resource Center Rockefeller University New York NY USA
Bristol Meyers Squibb Princeton NJ USA
Epinova DPU Immuno Inflammation Therapy Area GlaxoSmithKline R and D Stevenage UK
Laboratory of Immune Cell Epigenetics and Signaling Rockefeller University New York NY USA
Life Science Research Centre University of Ostrava Ostrava Czech Republic
NYU Langone Medical Center and School of Medicine New York NY USA
Zobrazit více v PubMed
McHeyzer-Williams MG (2003) B cells as effectors, Curr Opin Immunol. 15, 354–61. PubMed
Yurasov S & Nussenzweig MC (2007) Regulation of autoreactive antibodies, Curr Opin Rheumatol. 19, 421–6. PubMed
LeBien TW & Tedder TF (2008) B lymphocytes: how they develop and function, Blood. 112, 1570–80. PubMed PMC
Nutt SL, Hodgkin PD, Tarlinton DM & Corcoran LM (2015) The generation of antibody-secreting plasma cells, Nat Rev Immunol. 15, 160–71. PubMed
Martin F & Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets, Curr Opin Immunol. 13, 195–201. PubMed
Su I & Tarakhovsky A (2000) B-1 cells: orthodox or conformist?, Curr Opin Immunol. 12, 191–4. PubMed
Deenen GJ & Kroese FG (1992) Murine peritoneal Ly-1 B cells do not turn over rapidly, Ann N Y Acad Sci. 651, 70–1. PubMed
Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions, Nat Rev Immunol. 11, 34–46. PubMed
Montecino-Rodriguez E & Dorshkind K (2006) New perspectives in B-1 B cell development and function, Trends Immunol. 27, 428–33. PubMed
Rothstein TL (1990) Polyreactive low-affinity IgM antibodies produced by CD5+ B cells, Immunol Today. 11, 152. PubMed
Ghosn EE, Yang Y, Tung J, Herzenberg LA & Herzenberg LA (2008) CD11b expression distinguishes sequential stages of peritoneal B-1 development, Proc Natl Acad Sci U S A. 105, 5195–200. PubMed PMC
Forster I, Gu H, Muller W, Schmitt M, Tarlinton D & Rajewsky K (1991) CD5 B cells in the mouse, Curr Top Microbiol Immunol. 173, 247–51. PubMed
Hardy RR & Hayakawa K (1991) A developmental switch in B lymphopoiesis, Proc Natl Acad Sci U S A. 88, 11550–4. PubMed PMC
Hayakawa K, Hardy RR, Herzenberg LA & Herzenberg LA (1985) Progenitors for Ly-1 B cells are distinct from progenitors for other B cells, J Exp Med. 161, 1554–68. PubMed PMC
Haughton G, Arnold LW, Whitmore AC & Clarke SH (1993) B-1 cells are made, not born, Immunol Today. 14, 84–7; discussion 87-91. PubMed
Kantor AB, Merrill CE, Herzenberg LA & Hillson JL (1997) An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells, J Immunol. 158, 1175–86. PubMed
Yuan J, Nguyen CK, Liu X, Kanellopoulou C & Muljo SA (2012) Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis, Science. 335, 1195–200. PubMed PMC
Bennett RL, Swaroop A, Troche C & Licht JD (2017) The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer, Cold Spring Harb Perspect Med. 7, a026708. PubMed PMC
Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ 3rd, Qiao Q, Neubert TA, Xu RM, Gozani O & Reinberg D (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate, J Biol Chem. 284, 34283–95. PubMed PMC
Morishita M, Mevius D & di Luccio E (2014) In vitro histone lysine methylation by NSD1, NSD2/MMSET/WHSC1 and NSD3/WHSC1L, BMC Struct Biol. 14, 25. PubMed PMC
Greer EL & Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance, Nat Rev Genet. 13, 343–57. PubMed PMC
Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ & Kaneda Y (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2–5 to Wolf-Hirschhorn syndrome, Nature. 460, 287–91. PubMed
Andersen EF, Carey JC, Earl DL, Corzo D, Suttie M, Hammond P & South ST (2014) Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome, Eur J Hum Genet. 22, 464–70. PubMed PMC
Mirabella F, Wu P, Wardell CP, Kaiser MF, Walker BA, Johnson DC & Morgan GJ (2013) MMSET is the key molecular target in t(4;14) myeloma, Blood Cancer J. 3, e114. PubMed PMC
Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM & Bergsagel PL (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts, Blood. 92, 3025–34. PubMed
Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, Larratt LM, Mant MJ, Reiman T, Belch AR & Pilarski LM (2005) Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients, Blood. 105, 4060–9. PubMed PMC
Sauer B & Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1, Proc Natl Acad Sci U S A. 85, 5166–70. PubMed PMC
Schlake T & Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci, Biochemistry. 33, 12746–51. PubMed
Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice, Proc Natl Acad Sci U S A. 93, 6191–6. PubMed PMC
Schwenk F, Baron U & Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells, Nucleic Acids Res. 23, 5080–1. PubMed PMC
Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R & Reth M (2006) Testing gene function early in the B cell lineage in mb1-cre mice, Proc Natl Acad Sci U S A. 103, 13789–94. PubMed PMC
de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ & Kioussis D (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre, Eur J Immunol. 33, 314–25. PubMed
Rickert RC, Roes J & Rajewsky K (1997) B lymphocyte-specific, Cre-mediated mutagenesis in mice, Nucleic Acids Res. 25, 1317–8. PubMed PMC
Lee TI, Johnstone SE & Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location, Nat Protoc. 1, 729–48. PubMed PMC
Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D & Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell. 140, 678–91. PubMed PMC
Langmead B, Trapnell C, Pop M & Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol. 10, R25. PubMed PMC
Thorvaldsdóttir H, Robinson JT & Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief Bioinform. 14, 178–92. PubMed PMC
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R & Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol. 14, R36. PubMed PMC
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL & Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat Biotechnol. 31, 46–53. PubMed PMC
Torres RM & Kühn R (1997) Laboratory protocols for conditional gene targeting, Oxford Uninversity Press, Oxford, New York.
Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A & Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization, Genes Dev. 26, 114–9. PubMed PMC
Bhanu NV, Sidoli S & Garcia BA (2016) Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation, Proteomics. 16, 448–58. PubMed PMC
Yuan ZF, Sidoli S, Marchione DM, Simithy J, Janssen KA, Szurgot MR & Garcia BA (2018) EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data, J Proteome Res. 17, 2533–2541. PubMed PMC
Nguyen HV, Dong J, Panchakshari RA, Kumar V, Alt FW & Bories JC (2017) Histone methyltransferase MMSET promotes AID-mediated DNA breaks at the donor switch region during class switch recombination, Proc Natl Acad Sci U S A. 114, E10560–E10567. PubMed PMC
Chen J, Li N, Yin Y, Zheng N, Min M, Lin B, Zhang L, Long X, Zhang Y, Cai Z, Zhai S, Qin J & Wang X (2018) Methyltransferase NSD2 ensures germinal center selection by promoting adhesive interactions between B cells and follicular dendritic cells, Cell Rep. 25, 3393–3404 e6. PubMed
Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C & Song SY (2004) Retinoic acid imprints gut-homing specificity on T cells, Immunity. 21, 527–38. PubMed
Victora GD & Nussenzweig MC (2012) Germinal centers, Annu Rev Immunol. 30, 429–57. PubMed
Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R & Torres RM (2010) Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response, J Exp Med. 207, 1485–500. PubMed PMC
Clarke SH & McCray SK (1993) VH CDR3-dependent positive selection of murine VH12-expressing B cells in the neonate, Eur J Immunol. 23, 3327–34. PubMed
Brito JL, Walker B, Jenner M, Dickens NJ, Brown NJ, Ross FM, Avramidou A, Irving JA, Gonzalez D, Davies FE & Morgan GJ (2009) MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells, Haematologica. 94, 78–86. PubMed PMC
Kojima M, Sone K, Oda K, Hamamoto R, Kaneko S, Oki S, Kukita A, Machino H, Honjoh H, Kawata Y, Kashiyama T, Asada K, Tanikawa M, Mori-Uchino M, Tsuruga T, Nagasaka K, Matsumoto Y, Wada-Hiraike O, Osuga Y & Fujii T (2019) The histone methyltransferase WHSC1 is regulated by EZH2 and is important for ovarian clear cell carcinoma cell proliferation, BMC Cancer. 19, 455. PubMed PMC
Li J, Yin C, Okamoto H, Mushlin H, Balgley BM, Lee CS, Yuan K, Ikejiri B, Glasker S, Vortmeyer AO, Oldfield EH, Weil RJ & Zhuang Z (2008) Identification of a novel proliferation-related protein, WHSC1 4a, in human gliomas, Neuro Oncol. 10, 45–51. PubMed PMC
Liu C, Jiang YH, Zhao ZL, Wu HW, Zhang L, Yang Z, Hoffman RM & Zheng JW (2019) Knockdown of histone methyltransferase WHSC1 induces apoptosis and inhibits cell proliferation and tumorigenesis in salivary adenoid cystic carcinoma, Anticancer Res. 39, 2729–2737. PubMed
Baumgarth N (2016) B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production, Front Immunol. 7, 324. PubMed PMC
Hoffman W, Lakkis FG & Chalasani G (2016) B cells, antibodies, and more, Clin J Am Soc Nephrol. 11, 137–54. PubMed PMC
Dobenecker MW, Yurchenko V, Marcello J, Becker A, Rudensky E, Bahnu NV, Carrol T, Garcia BA, Rosenberg BR, Prinjha R & Tarakhovsky A (2019) Histone methyltransferase MMSET/NSD2 is essential for generation of B1 cell compartment in mice, bioRxiv, 687806.