Differences in the growth rate and immune strategies of farmed and wild mallard populations

. 2020 ; 15 (8) : e0236583. [epub] 20200831

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32866175

Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.

Zobrazit více v PubMed

Laikre L, Schwartz MK, Waples RS, Nils Ryman N. Compromising Genetic Diversity in the Wild: Unmonitored Large-Scale Release of Plants and Animals. TREE. 2010; 25: 520–29. 10.1016/j.tree.2010.06.013 PubMed DOI

Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton JD. Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv. 2012. a; 20: 231–241.

Pérez-Buitrago N, García MA, Sabat A, Delgad J, Alberto Álvarez A, McMillan O, et al. Do headstart programs work? Survival and body condition in headstarted Mona Island iguanas Cyclura Cornuta Stejnegeri. Endang Species Res. 2008; 6: 55–65.

Roche EA, Cuthbert FJ, Arnold TW. Relative Fitness of Wild and Captive-Reared Piping Plovers: Does Egg Salvage Contribute to Recovery of the Endangered Great Lakes Population? Biol Conserv. 2008; 141: 3079–88.

Weinhold U. Draft European action plan for the conservation of the common hamster (Cricetus cricetus L., 1758). In Preliminary Document. Convention on the Conservation of European Wildlife and Natural Habitats. 2008. Available from: http://www.zoogdierenwerkgroep.be/sites/default/files/zwg/EuropeanPlanConservationHamster.pdf

Laikre L, Palmé A, Josefsson M, Utter F, Ryman N. Release of Alien Populations in Sweden. Ambio. 2006; 35: 255–61. 10.1579/05-a-060r.1 PubMed DOI

Villanúa D, Pérez-Rodríguez L, Casas F, Alzaga V, Acevedo P, Viñuela J, et al. Sanitary risks of red-legged partridge releases: introduction of parasites Eur J Wildl Res. 2008; 54: 199–204.

Santilli F, Mazzoni Della Stella R, Mani P, Fronte B, Paci G, Bagliacca M. Behavioural differences between pheasants artificially hatched from wild parents or from farm parents. Ann Fac Med Vet. 2004; 56: 344–351. (In Italian with English summary).

Woodworth LM, Montgomery ME, Briscoe DA, Frankham R. Rapid genetic deterioration in captive populations: Causes and conservation implications. Conserv Genet. 2002; 3: 277–88.

Gilligan DM, Frankham R. Dynamics of genetic adaptation to captivity. Conserv Genet. 2003; 4: 189–97.

Robert A. Captive breeding genetics and reintroduction success. Biol Conserv. 2009; 142: 2915–22.

Guay P, Iwaniuk AN. Captive Breeding Reduces Brain Volume in Waterfowl (Anseriformes). Condor. 2008; 110: 276–84.

Moore SJ, Battley PF. Differences in the digestive organ morphology of captive and wild Brown Teal Anas chlorotis and implications for releases. Bird Conserv Int. 2006; 16: 253–64.

Champagnon J, Guillemain M, Elmberg J, Massez G, Cavallo F, Gauthier-Clerc M. Low survival after release into the wild: assessing “the burden of captivity” on Mallard physiology and behaviour. Eur J Wildlife Res. 2012. b; 58: 255–267.

Ford MJ. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv Biol. 2002; 16: 815–25.

Araki H, Cooper B, Blouin MS. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science. 2007; 318: 100–103. 10.1126/science.1145621 PubMed DOI

Champagnon J, Guillemain M, Gauthier-Clerc M, Lebreton JD, Elmberg J. Consequences of massive bird releases for hunting purposes: Mallard Anas platyrhynchos in the Camargue, southern France. Wildfowl Special Issue. 2009; 2: 184–191.

Champagnon J. Consequences of the introduction of individuals within harvested population: the case of the Mallard Anas Platyrhynchos. Ph.D. thesis, University of Montpellier II, Montpellier. 2011. Available from: http://www.ducksg.org/wp-content/uploads/2014/06/CHAMPAGNON_2011_PhD.pdf

Birdlife International. Birds in Europe: populations, estimates, trends and conservation status. BirdLife Conservation Series No. 12, Birdlife International, Cambridge. 2004.

Söderquist P, Elmberg J, Gunnarsson G, Thulin CG, Champagnon J, Guillemain M, et al. Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos). Eur J Wildl Res. 2017; 63: 98.

Champagnon J, Crochet PA, Kreisinger J, Čìžková D, Gauthier-Clerc M, Massez G, et al. Assessing the genetic impact of massive restocking on wild mallard. Anim Conserv. 2013; 16: 295–305.

Čížková D, Javůrková V, Champagnon J, Kreisinger J. Duck’s not dead: Does restocking with captive bred individuals affect the genetic integrity of wild mallard (Anas Platyrhynchos) population? Biol Conserv. 2012; 152: 231–240.

Osborne CE, Swift LS, Baldassarre GA. Fate of Captive-Reared and Released Mallards on Eastern Long Island, New York. Human-Wildlife Interactions. 2010; 4: 266–74.

Champagnon J, Legagneux P, Souchay G, Inchausti P, Bretagnolle V, Bourguemestre F, et al. Robust estimation of survival and contribution of captive-bred Mallards Anas platyrhynchos to a wild population in a large-scale release programme. Ibis. 2016; 158: 343–352.

Byers SM, Cary JR. Discrimination of mallard strains on the basis of morphology. J Wildlife Manage. 1991; 55: 580–586.

Söderquist P, Gunnarsson G, Johan Elmberg J. Longevity and migration distance differ between wild and hand-reared mallards Anas Platyrhynchos in Northern Europe. Eur J Wildl Res. 2013; 59: 159–66.

Champagnon J, Guillemain M, Elmberg J, Folkesson K, Gauthier-Clerc M. Changes in Mallard Anas Platyrhynchos Bill Morphology after 30 Years of Supplemental Stocking. Bird Study. 2010; 57: 344–51.

Gunnarsson G, Elmberg J, Waldenström J. Trends in Body Mass of Ducks over Time: The Hypotheses in Guillemain et al. Revisited. Ambio. 2011; 40: 338–40. 10.1007/s13280-010-0117-1 PubMed DOI PMC

Söderquist P, Norrström J, Elmberg J, Guillemain M, Gunnarsson G. Wild Mallards Have More “goose-Like” bills than Their Ancestors: A Case of Anthropogenic Influence? PLoS ONE. 2014; 9: 1–14. PubMed PMC

Guillemain M, Elmberg J, Gauthier-Clerc M, Massez G, Hearn R, Champagnon J. Wintering French Mallard and Teal are heavier and in better body condition than 30 years ago: Effects of a changing environment? Ambio. 2010; 39: 170–180. 10.1007/s13280-010-0020-9 PubMed DOI PMC

Flint PL, Sedinger JS, Pollock KH. Survival of juvenile Black Brant during brood rearing. J Wildlife Manage. 1995; 59: 455–463.

Colwell MA, Hurley SJ, Hall JN, Dinsmore SJ. Age-Related Survival and Behavior of Snowy Plover Chicks. Condor. 2007; 109: 638–647.

Prince HH, Siegel PB, Cornwell GW. Inheritance of egg production and juvenile growth in mallards. Auk. 1970; 87: 342–352.

Davis AK, Maney DL, Maerz JC. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol. 2008; 22: 760–72.

Campbell TW, Ellis CK. Avian and exotic animal hematology and cytology, 3rd edn. Blackwell, Ames: 2007.

Ochsenbein AF, Zinkernagel RM. Natural antibodies and complement link innate and acquired immunity. Immunol Today. 2000; 21: 624–630. 10.1016/s0167-5699(00)01754-0 PubMed DOI

Mestral LG, Herbinger CM. Reduction in antipredator response detected between first and second generations of endangered juvenile Atlantic salmon Salmo salar in a captive breeding and rearing programme. J Fish Biol. 2013; 83: 1268–1286. 10.1111/jfb.12221 PubMed DOI

Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos. 2000; 88: 87–98.

Norris K, Evans MR. Ecological immunology: life history trade-offs and immune defence in birds. Behav Ecol. 2000; 11: 19–26.

Buehler DM, Piersma T, Tieleman BI. Captive and free-living red knots Calidris canutus exhibit differences in non-induced immunity that suggest different immune strategies in different environments. J Avian Biol. 2016; 39: 560–566.

Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. TREE. 2003; 5347: 1–5. PubMed

Šťastný K, Bejček V, Hudec K. Atlas hnízdního rozšíření ptáků v České republice 2001–2003. Aventinum, Prague; 2006.

Weller MW. A simple field candler for waterfowl eggs. J Wildlife Manage. 1956; 20: 111–113.

Eldrigde JL, Krapu GL. The influence of diet quality on clutch size and laying pattern in Mallards. Auk. 1988; 105: 102–110.

Hoyo J del, Elliott A, Sargatal J, editors. Handbook of the Birds of the World, Vol. 1 Ostrich to Ducks, Lynx Edicions, Barcelona. 1996.

Krist M. Egg size and offspring quality: A meta-analysis in birds. Biol Rev. 2011; 86: 692–716. 10.1111/j.1469-185X.2010.00166.x PubMed DOI

Hoyt DF. Practical methods of estimating volume and fresh weight of bird eggs. Auk. 1979; 96: 73–77.

Hořák D, Albrecht T. Using net sacks to examine the relationship between egg size and young size in Common Pochards. J Field Ornithol. 2007; 78: 334–339.

Cīrule D, Krama T, Vrublevska J, Rantala MJ, Krams I. A rapid effect of handling on counts of white blood cells in a wintering passerine bird: A more practical measure of stress? J Ornithol. 2012; 153: 161–166.

Svobodová J, Bauerová P, Eliáš J, Velová H, Vinkler M, Albrecht T. Sperm variation in Great Tit males (Parus major) is linked to a haematological health-related trait, but not ornamentation. J Ornithol. 2018; 159: 815–822.

Lessells CM, Boag PT. Unrepeatable repeatabilities: a common mistake. Auk. 1987; 104: 116–121.

Rasband WS. 2018 ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. 2018. Available from: https://imagej.nih.gov/ij/

Svobodová J, Gabrielová B, Hyršl P, Albrecht T, Vinkler M. Melanin and carotenoid ornaments are related to the individual condition in free-living grey partridges (Perdix perdix). J Ornithol. 2016; 157: 1007–1015.

Griffiths R, Double MC, Orr K, Dawson RG. A DNA test to sex most birds. Molecular Ecol. 1998; 7: 1071–1075. PubMed

Poláková R, Schnitzer J, Vinkler M, Munclinger P, Albrecht T. Effect of extra-pair paternity and parental quality on brood sex ratio in the scarlet rosefinch Carpodacus erythrinus. Folia Zool. 2012; 61: 225–232.

Mirman D. Growth curve analysis and visualization using R. CRC Press, Boca Raton: 2014.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.

Frésard L, Morisson M, Brun JM, Collin A, Pain B, Minvielle F, et al. Epigenetics and phenotypic variability: Some interesting insights from birds. Genet Sel Evol. 2013; 45: 1–12. 10.1186/1297-9686-45-1 PubMed DOI PMC

Mignon-Grasteau S, Boissy A, Bouix J, Faure JM, Fisher AD, Hinch GN, et al. Genetics of adaptation and domestication in livestock. Livest Prod Sci. 2005; 93: 3–14.

Anderson VR, Alisauskas RT. Egg size, body size, locomotion, and feeding performance in captive King Eider ducklings. Condor. 2001; 103: 195–199.

Devries JH, Brook RW, Howerter DW, Anderson MG. Effects of Spring Body Condition and Age on Reproduction in Mallards (Anas Platyrhynchos). Auk. 2008; 125: 618–628.

Mousseau TA, Fox CW. The adaptive significance of maternal effects 1998. TREE. 1998; 13: 403–407. 10.1016/s0169-5347(98)01472-4 PubMed DOI

Mallarino R, Campàs O, Fritz JA, Burns KJ, Weeks OG, Brenner MP, et al. Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proc Natl Acad Sci U.S.A. 2012; 109: 16222–16227. 10.1073/pnas.1206205109 PubMed DOI PMC

Davis AK, Cook KC, Altizer S. Leukocyte Profiles in Wild House Finches with and without Mycoplasmal Conjunctivitis, a Recently Emerged Bacterial Disease. Ecohealth. 2004; 1: 362–373.

Künzl C, Sachser N. The behavioral endocrinology of domestication: A comparison between the domestic guinea pig (Cavia aperea f. porcellus) and its wild ancestor, the cavy (Cavia aperea). Horm Behav. 1999; 35: 28–37. 10.1006/hbeh.1998.1493 PubMed DOI

Lepage O, Øverli Ø, Petersson E, Järvi T, Winberg S. Differential stress coping in wild and domesticated sea trout. Brain Behav Evol. 2000; 56: 259–268. 10.1159/000047209 PubMed DOI

Solberg MF, Skaala Ø, Nilsen F, Glover KA. Does Domestication Cause Changes in Growth Reaction Norms? A Study of Farmed, Wild and Hybrid Atlantic Salmon Families Exposed to Environmental Stress. PLoS One. 2013; 8: 1–11. PubMed PMC

Yamato O, Goto I, Maeda Y. Hemolytic anemia in wild seaducks caused by marine oil pollution. J Wildl Dis. 1996; 32: 381–384. 10.7589/0090-3558-32.2.381 PubMed DOI

Belskii EA, Lugas'kova NV, Karfidova AA. Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russ J Ecol. 2005; 36: 329–335.

Bauerová P, Vinklerová J, Hraníček J, Čorba V, Vojtek L, Svobodová J, et al. Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. Sci Total Environ. 2017; 601–602: 1556–1565. PubMed

Hanssen SA, Hasselquist D, Folstad I, Erikstad KE. Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc R Soc B Biol Sci. 2004; 271: 925–930. PubMed PMC

Brzek P, Konarzewski M. Relationship between avian growth rate and immune response depends on food availability. J Exp Biol. 2007; 210: 2361–2367. 10.1242/jeb.003517 PubMed DOI

Homberger B, Jenni-Eiermann S, Roulin A, Jenni L. The impact of pre- and post-natal contexts on immunity, glucocorticoids and oxidative stress resistance in wild and domesticated grey partridges. Funct Ecol. 2013; 27: 1042–1054.

Laikre L, Palmé A, Josefsson M, Utter F, Ryman N. Release of alien populations in Sweden. Ambio 2006; 35: 255–261. 10.1579/05-a-060r.1 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...