Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32872109
PubMed Central
PMC7504282
DOI
10.3390/ma13173799
PII: ma13173799
Knihovny.cz E-zdroje
- Klíčová slova
- aggregate from sanitary ceramic wastes, mineral–asphalt mixtures, porosity, surface free energy, wettability,
- Publikační typ
- časopisecké články MeSH
In line with the current trend of seeking alternative methods for modification of the existing building composites, such as mineral-asphalt mixtures (MAMs), the materials from concrete and ceramics recycling are being used in increasingly wider applications. When added to MAMs as an aggregate, ceramic building material, which has different properties than the raw material (clay), may significantly influence the aggregate properties, including the wettability, porosity, asphalt adhesion, and consequently the mixture durability. The material's microstructure was found using SEM. The wetting properties of mineral-asphalt mixtures were determined by measuring the contact angles (CA) of their surfaces, using water as the measuring liquid. The total surface free energy (SFE) values were determined using the Neumann method. When analyzing the research results, it can be noticed that the chemical composition of the ceramic aggregate has a significant influence on the adhesion of asphalt to its surface due to the chemical affinity. Waste ceramic aggregate, despite its acidic pH value being connected with its elevated silica content, exhibits good adhesive properties.
Zobrazit více v PubMed
Carpenter T. Environment, Construction and Sustainable Development—The Environmental Impact of Construction/Sustainable Civil Engineering. John Wiley & Sons; Chichester, UK: 2001.
Medineckienė M., Turskis Z., Zavadskas E.K. Sustainable construction taking into account the building impact on the environment. J. Environ. Eng. Landsc. Manag. 2010;18:118–127. doi: 10.3846/jeelm.2010.14. DOI
Pervaiz M., Sain M.M. Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 2003;39:325–340. doi: 10.1016/S0921-3449(02)00173-8. DOI
Fořt J., Novotný R., Trník A., Černý R. Preparation and Characterization of Novel Plaster with Improved Thermal Energy Storage Performance. Energies. 2019;12:3318. doi: 10.3390/en12173318. DOI
Zhao D., McCoy A.P., Du J., Agee P., Lu Y. Interaction effects of building technology and resident behavior on energy consumption in residential buildings. Energy Build. 2017;134:223–233. doi: 10.1016/j.enbuild.2016.10.049. DOI
Lee E.-J., Pae M.-H., Kim D.-H., Kim J.-M., Kim J.-Y. Literature Review of Technologies and Energy Feedback Measures Impacting on the Reduction of Building Energy Consumption. In: Yoo S.-D., editor. EKC2008 Proceedings of the EU-Korea Conference on Science and Technology. Volume 124. Springer; Berlin/Heidelberg, Germany: 2008. pp. 223–228.
Brzyski P., Barnat-Hunek D., Suchorab Z., Łagód G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials. 2017;10:510. doi: 10.3390/ma10050510. PubMed DOI PMC
Pavlík Z., Pavlíková M., Záleská M., Łagód G., Suchorab Z., Guz L. Life cycle assessment of the use of sewage sludge as Portland cement replacement. IOP Conf. Ser. Mater. Sci. Eng. 2019;710:012038. doi: 10.1088/1757-899X/710/1/012038. DOI
Brzyski P., Suchorab Z. Capillary Uptake Monitoring in Lime-Hemp-Perlite Composite Using the Time Domain Reflectometry Sensing Technique for Moisture Detection in Building Composites. Materials. 2020;13:1677. doi: 10.3390/ma13071677. PubMed DOI PMC
Brzyski P., Grudzińska M., Majerek D. Analysis of the Occurrence of Thermal Bridges in Several Variants of Connections of the Wall and the Ground Floor in Construction Technology with the Use of a Hemp–lime Composite. Materials. 2019;12:2392. doi: 10.3390/ma12152392. PubMed DOI PMC
Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab Z., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI
Janssen G.M.T., Hendriks C.F. Advances in Building Technology. Elsevier; Amsterdam, The Netherlands: 2002. Sustainable use of recycled materials in building construction; pp. 1399–1406.
Treloar G.J., Gupta H., Love P.E.D., Nguyen B. An analysis of factors influencing waste minimisation and use of recycled materials for the construction of residential buildings. Manag. Environ. Qual. 2003;14:134–145. doi: 10.1108/14777830310460432. DOI
Góra J., Franus M., Barnat-Hunek D., Franus W. Utilization of Recycled Liquid Crystal Display (LCD) Panel Waste in Concrete. Materials. 2019;12:2941. doi: 10.3390/ma12182941. PubMed DOI PMC
Chen S.-H., Wang H.-Y., Jhou J.-W. Investigating the properties of lightweight concrete containing high contents of recycled green building materials. Constr. Build. Mater. 2013;48:98–103. doi: 10.1016/j.conbuildmat.2013.06.040. DOI
Widomski M., Gleń P., Łagód G. Sustainable Landfilling As Final Step of Municipal Waste Management System. Probl. Sustain. Dev. 2017;12:147–155.
Torkittikul P., Chaipanich A. Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem. Concr. Compos. 2010;32:440–449. doi: 10.1016/j.cemconcomp.2010.02.004. DOI
Andrzejuk W., Barnat-Hunek D., Góra J. Physical Properties of Mineral and Recycled Aggregates Used to Mineral-Asphalt Mixtures. Materials. 2019;12:3437. doi: 10.3390/ma12203437. PubMed DOI PMC
Golewski G.L. Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture. J. Civ. Eng. Manag. 2017;23:613–620. doi: 10.3846/13923730.2016.1217923. DOI
Yazici Ş., Arel H.Ş. Effects of fly ash fineness on the mechanical properties of concrete. Sadhana. 2012;37:389–403. doi: 10.1007/s12046-012-0083-3. DOI
Woszuk A. Application of fly ash derived zeolites in warm-mix asphalt technology. Materials. 2018;11:1542. doi: 10.3390/ma11091542. PubMed DOI PMC
Suchorab Z., Barnat-Hunek D., Franus M., Łagód G. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge. Materials. 2016;9:317. doi: 10.3390/ma9050317. PubMed DOI PMC
Woszuk A., Bandura L., Franus W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019;235:493–502. doi: 10.1016/j.jclepro.2019.06.353. DOI
Rutkowska G., Wichowski P., Fronczyk J., Franus M., Chalecki M. Use of fly ashes from municipal sewage sludge combustion in production of ash concretes. Constr. Build. Mater. 2018;188:874–883. doi: 10.1016/j.conbuildmat.2018.08.167. DOI
Rutkowska G., Wichowski P., Franus M., Mendryk M., Fronczyk J. Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge. Materials. 2020;13:487. doi: 10.3390/ma13020487. PubMed DOI PMC
DeDene C.D., You Z.-P. The Performance of Aged Asphalt Materials Rejuvenated with Waste Engine Oil. Int. J. Pavement Res. Technol. 2014;7:145–152.
Chen M., Leng B., Wu S., Sang Y. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Constr. Build. Mater. 2014;66:286–298. doi: 10.1016/j.conbuildmat.2014.05.033. DOI
Woszuk A., Wróbel M., Franus W. Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt. Materials. 2019;12:2265. doi: 10.3390/ma12142265. PubMed DOI PMC
Shu X., Huang B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014;67:217–224. doi: 10.1016/j.conbuildmat.2013.11.027. DOI
Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I., Keppert M., Koutsoukos P.G., Černý R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016;112:409–419. doi: 10.1016/j.jclepro.2015.09.072. DOI
Senthamarai R., Devadas Manoharan P. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005;27:910–913. doi: 10.1016/j.cemconcomp.2005.04.003. DOI
Afshinnia K., Rangaraju P.R. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 2016;117:263–272. doi: 10.1016/j.conbuildmat.2016.04.072. DOI
Yang X., You Z.-P., Dai Q.-L. Performance Evaluation of Asphalt Binder Modified by Bio-oil Generated from Waste Wood Resources. Int. J. Pavement Res. Technol. 2013;6:431–439.
Hettiarachchi C., Hou X., Wang J., Xiao F. A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology. Constr. Build. Mater. 2019;227:117096. doi: 10.1016/j.conbuildmat.2019.117096. DOI
Kabir S., Al-Shayeb A., Khan I.M. Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials. Procedia Eng. 2016;145:1518–1525. doi: 10.1016/j.proeng.2016.04.191. DOI
WT-2 2014 . Mineral-Asphalt Mixtures, Requirements. WT-2; Warsaw, Poland: 2014.
European Committee for Standardization . EN 13108-1: Mineral-Asphalt Mixtures—Requirements—Part 1: Asphalt Concrete. CEN; Brussels, Belgium: 2006.
European Committee for Standardization . EN 12697: Mineral-Asphalt Mixtures—Methods of Testing Hot-Mix Asphalt Mixtures. CEN; Brussels, Belgium: 2015.
Barnat-Hunek D., Łagód G., Fic S., Jarosz-Hadam M. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers. 2018;10:420. doi: 10.3390/polym10040420. PubMed DOI PMC
Fic S.B. Adhesion and Self-Organization of the Material Structure in Construction Creating; (Adhezja i Samoorganizacja Struktury Materiału w Tworzeniu Konstrukcji) Lublin University of Technology; Lublin, Poland: 2019.
Diab A. Studying viscosity of asphalt binders and effect of varied production temperatures on engineering properties of hot mix asphalt mixtures. Can. J. Civ. Eng. 2017;44:1–9. doi: 10.1139/cjce-2016-0383. DOI
Tan Y., Guo M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013;47:254–260. doi: 10.1016/j.conbuildmat.2013.05.067. DOI
Cui S., Blackman B.R.K., Kinloch A.J., Taylor A.C. Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 2014;54:100–111. doi: 10.1016/j.ijadhadh.2014.05.009. DOI
Halicka A., Ogrodnik P., Zegardlo B. Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 2013;48:295–305. doi: 10.1016/j.conbuildmat.2013.06.063. DOI
Guerra I., Vivar I., Llamas B., Juan A., Moran J. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 2009;29:643–646. doi: 10.1016/j.wasman.2008.06.018. PubMed DOI
Silvestre R., Medel E., García A., Navas J. Using ceramic wastes from tile industry as a partial substitute of natural aggregates in hot mix asphalt binder courses. Constr. Build. Mater. 2013;45:115–122. doi: 10.1016/j.conbuildmat.2013.03.058. DOI
Medina C., Banfill P.F.G., Sánchez de Rojas M.I., Frías M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013;40:822–831. doi: 10.1016/j.conbuildmat.2012.11.112. DOI
Andrzejuk W., Barnat-Hunek D., Siddique R., Zegardło B., Łagód G. Application of Recycled Ceramic Aggregates for the Production of Mineral-Asphalt Mixtures. Materials. 2018;11:658. doi: 10.3390/ma11050658. PubMed DOI PMC
The Declaration of Performance. LOTOS Asfalt; Gdańsk, Poland: 2020.
Neumann A.W., Good R.J., Hope C.J., Sejpal M. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 1974;49:291–304. doi: 10.1016/0021-9797(74)90365-8. DOI
Gaweł I., Kalabińska M., Piłat J. Asfalty Drogowe. In: Piłat J., Radziszewski P., editors. WKŁ, Warsaw 2001. Nawierzchnie Asfaltowe, WKŁ; Warsaw, Poland: 2010.
European Committee for Standardization . EN 13302: Bitumen and Bituminous Binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus. CEN; Brussels, Belgium: 2018.
van der Leeden M.C., Frens G. Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Adv. Eng. Mater. 2002;4:280–289. doi: 10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-Z. DOI
Baldan A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012;38:95–116. doi: 10.1016/j.ijadhadh.2012.04.007. DOI
Miller C.M. Adhesion and the Surface Energy Components of Natural Minerals and Aggregates. Texas A&M University; College Station, TX, USA: 2010.
Howson J., Amit Bhasin E.M., Little D., Lytton R. Comprehensive analysis of surface free energy of asphalts and aggregates and the effects of changes in pH. Constr. Build. Mater. 2011;25:2554–2564. doi: 10.1016/j.conbuildmat.2010.11.098. DOI
Yen T.F., Chilingarian G.V. Asphaltenes and Asphalts, 2. Elsevier; Burlington, NJ, USA: 2000.
Trzaska E. Kationowe emulsje asfaltowe. Metody wytwarzania, rodzaje i zastosowanie. Nafta-Gaz. 2017;73:438–445. doi: 10.18668/NG.2017.06.09. DOI
Maeva E., Severina I., Bondarenko S., Chapman G., O’Neill B., Severin F., Maev R.G. Acoustical methods for the investigation of adhesively bonded structures: A review. Can. J. Phys. 2004;82:981–1025. doi: 10.1139/p04-056. DOI
Yoon H.H., Tarrer A.T. Effect of Aggregate Properties on Stripping. Transportation Research Board; Washington, WA, USA: 1988.
Bikerman J.J. The Science of Adhesive Joints. Academic Press; New York, NY, USA: 1961. p. 258.
Minoru K., Toshiro K., Yuichi U., Keitetsu R. Evaluation of Bond Properties in Concrete Repair Materials. J. Mater. Civ. Eng. 2001;13:98–105. doi: 10.1061/(ASCE)0899-1561(2001)13:2(98). DOI
Kinloch A.J. The science of adhesion. J. Mater. Sci. 1980;15:2141–2166. doi: 10.1007/BF00552302. DOI
Leftwich T., Teplyakov A. Chemical manipulation of multifunctional hydrocarbons on silicon surfaces. Surf. Sci. Rep. 2008;63:1–71. doi: 10.1016/j.surfrep.2007.08.001. DOI
Oliviero Rossi C., Teltayev B., Angelico R. Adhesion Promoters in Bituminous Road Materials: A Review. Appl. Sci. 2017;7:524. doi: 10.3390/app7050524. DOI
Larrard de F. Concrete Mixture Proportioning: A Scientific Approach. E & FN Spon; London, UK: New York, NY, USA: 1999. Modern concrete technology.
Liu S., Ha Z. Prediction of random packing limit for multimodal particle mixtures. Powder Technol. 2002;126:283–296. doi: 10.1016/S0032-5910(02)00075-X. DOI
Kwan A.K.H., Chan K.W., Wong V. A 3-parameter particle packing model incorporating the wedging effect. Powder Technol. 2013;237:172–179. doi: 10.1016/j.powtec.2013.01.043. DOI
Kwan A.K.H., Chen J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol. 2013;234:19–25. doi: 10.1016/j.powtec.2012.09.016. DOI
Andrzejuk W., Barnat-Hunek D., Fic S., Styczeń J. Wettability and Surface Free Energy of Mineral-Asphalt Mixtures with Dolomite and Recycled Aggregate. IOP Conf. Ser. Mater. Sci. Eng. 2019;471:032011. doi: 10.1088/1757-899X/471/3/032011. DOI
Howson J.E. Relationship between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces. Texas A&M University; College Station, TX, USA: 2011.