• This record comes from PubMed

Control Methods for Transradial Prostheses Based on Remnant Muscle Activity and Its Relationship with Proprioceptive Feedback

. 2020 Aug 28 ; 20 (17) : . [epub] 20200828

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project

The loss of a hand can significantly affect one's work and social life. For many patients, an artificial limb can improve their mobility and ability to manage everyday activities, as well as provide the means to remain independent. This paper provides an extensive review of available biosensing methods to implement the control system for transradial prostheses based on the measured activity in remnant muscles. Covered techniques include electromyography, magnetomyography, electrical impedance tomography, capacitance sensing, near-infrared spectroscopy, sonomyography, optical myography, force myography, phonomyography, myokinetic control, and modern approaches to cineplasty. The paper also covers combinations of these approaches, which, in many cases, achieve better accuracy while mitigating the weaknesses of individual methods. The work is focused on the practical applicability of the approaches, and analyses present challenges associated with each technique along with their relationship with proprioceptive feedback, which is an important factor for intuitive control over the prosthetic device, especially for high dexterity prosthetic hands.

See more in PubMed

Kuiken T.A., Childress D.S., Rymer W.Z. The hyper-reinnervation of rat skeletal muscle. Brain Res. 1995;676:113–123. doi: 10.1016/0006-8993(95)00102-V. PubMed DOI

Hebert J., Elzinga K., Chan K., Olson J., Morhart M. Updates in Targeted Sensory Reinnervation for Upper Limb Amputation. Curr. Surg. Rep. 2014;2:45–53. doi: 10.1007/s40137-013-0045-7. DOI

Kung T., Langhals N., Martin D., Johnson P., Cederna P., Urbanchek M. Regenerative Peripheral Nerve Interface Viability and Signal Transduction with an Implanted Electrode. Plast. Reconstr. Surg. 2014;133:1380–1394. doi: 10.1097/PRS.0000000000000168. PubMed DOI

Ambani S., Urbanchek M., Zheng X., Leach M., Moon J., Cederna P., Langhals N. Partial Skeletal Muscle Grafts for Prosthetic Control. Plast. Reconstr. Surg. 2014;134:55–56. doi: 10.1097/01.prs.0000455396.91552.19. PubMed DOI

Kang N., Woollard A., Konczalik W. New surgical options to improve the quality of life of amputees. Surgery. 2019;37:276–287. doi: 10.1016/j.mpsur.2019.02.007. DOI

Woo S.L., Kung T.A., Brown D.L., Leonard J.A., Kelly B.M., Cederna P.S. Regenerative Peripheral Nerve Interfaces for the Treatment of Postamputation Neuroma Pain: A Pilot Study. Plast. Reconstr Surg.–Glob. Open. 2016;4 doi: 10.1097/GOX.0000000000001038. PubMed DOI PMC

Kubiak C.A., Kemp S.W.P., Cederna P.S. Regenerative Peripheral Nerve Interface for Management of Postamputation Neuroma. JAMA Surg. 2018;153:681–682. doi: 10.1001/jamasurg.2018.0864. PubMed DOI

Dumanian G.A., Potter B.K., Mioton L.M., Ko J.H., Cheesborough J.E., Souza J.M., Ertl W.J., Tintle S.M., Nanos G.P., Valerio I.L., et al. Targeted Muscle Reinnervation Treats Neuroma and Phantom Pain in Major Limb Amputees: A Randomized Clinical Trial. Ann. Surg. 2019;270:238–246. doi: 10.1097/SLA.0000000000003088. PubMed DOI

Morgan E.N., Kyle Potter B., Souza J.M., Tintle S.M., Nanos G.P.I. Targeted Muscle Reinnervation for Transradial Amputation: Description of Operative Technique. Tech. Hand Up. Extrem. Surg. 2016;20:166–171. doi: 10.1097/BTH.0000000000000141. PubMed DOI

Stubblefield K.A., Miller L.A., Lipschutz R.D., Kuiken T.A. Occupational therapy protocol for amputees with targeted muscle reinnervation. J. Rehabil. Res. Dev. 2009;46:481–488. doi: 10.1682/JRRD.2008.10.0138. PubMed DOI PMC

Pascale B.A., Potter B.K. Residual Limb Complications and Management Strategies. Curr. Phys. Med. Rehabil. Rep. 2014;2:241–249. doi: 10.1007/s40141-014-0063-0. DOI

Engdahl S.M., Christie B.P., Kelly B., Davis A., Chestek C.A., Gates D.H. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J. Neuroeng. Rehabil. 2015;12 doi: 10.1186/s12984-015-0044-2. PubMed DOI PMC

Peerdeman B., Boere D., Witteveen H., Hermens H., Stramigioli S., Rietman H., Veltink P., Misra S. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehabil. Res. Dev. 2011;48:719–737. doi: 10.1682/JRRD.2010.08.0161. PubMed DOI

Wilk K.E., Hooks T.R. 12-Neuromuscular Training After Anterior Cruciate Ligament Reconstruction. In: Noyes F.R., Barber-Westin S.D., editors. Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 330–342.

Proske U., Gandevia S. The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. Physiol. Rev. 2012;92:1651–1697. doi: 10.1152/physrev.00048.2011. PubMed DOI

Riemann B., Lephart S. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002;37:80–84. PubMed PMC

Marasco P.D., Hebert J.S., Sensinger J.W., Shell C.E., Schofield J.S., Thumser Z.C., Nataraj R., Beckler D.T., Dawson M.R., Blustein D.H., et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 2018;10:1–12. doi: 10.1126/scitranslmed.aao6990. PubMed DOI PMC

Cappello L., Elangovan N., Contu S., Khosravani S., Konczak J., Masia L. Robot-Aided Assessment of Wrist Proprioception. Front. Hum. Neurosci. 2015;9 doi: 10.3389/fnhum.2015.00198. PubMed DOI PMC

Han J., Waddington G., Adams R., Anson J., Liu Y. Assessing proprioception: A critical review of methods. J. Sport Health Sci. 2015;90 doi: 10.1016/j.jshs.2014.10.004. PubMed DOI PMC

Rosker J., Sarabon N. Kinaesthesia and methods for its assessment. Sport Sci. Rev. 2010;19:165–208. doi: 10.2478/v10237-011-0037-4. DOI

Contu S., Hussain A., Kager S., Budhota A., Deshmukh V.A., Kuah C.W.K., Yam L.H.L., Xiang L., Chua K.S.G., Masia L., et al. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0183257. PubMed DOI PMC

Hillier S., Immink M., Thewlis D. Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil. Neural Repair. 2015;29:933–949. doi: 10.1177/1545968315573055. PubMed DOI

Han J., Anson J., Waddington G., Adams R. Proprioceptive performance of bilateral upper and lower limb joints: Side-general and site-specific effects. Exp. Brain Res. 2013;226:313–323. doi: 10.1007/s00221-013-3437-0. PubMed DOI PMC

Han J., Waddington G., Adams R., Anson J. Ability to discriminate movements at multiple joints around the body: Global or site-specific. Percept. Mot. Skills. 2013;116:59–68. doi: 10.2466/24.10.23.PMS.116.1.59-68. PubMed DOI

Tuthill J.C., Azim E. Proprioception. Curr. Biol. 2018;28:R194–R203. doi: 10.1016/j.cub.2018.01.064. PubMed DOI

Ribot-Ciscar E., Roll J.-P. Ago-antagonist muscle spindle inputs contribute together to joint movement coding in man. Brain Res. 1998;791:167–176. doi: 10.1016/S0006-8993(98)00092-4. PubMed DOI

Srinivasan S.S., Carty M.J., Calvaresi P.W., Clites T.R., Maimon B.E., Taylor C.R., Zorzos A.N., Herr H. On prosthetic control: A regenerative agonist-antagonist myoneural interface. Sci. Robot. 2017;2:eaan2971. doi: 10.1126/scirobotics.aan2971. PubMed DOI

Schiefer M.A., Graczyk E.L., Sidik S.M., Tan D.W., Tyler D.J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE. 2018;13:e0207659. doi: 10.1371/journal.pone.0207659. PubMed DOI PMC

Blank A., Okamura A.M., Kuchenbecker K.J. Identifying the role of proprioception in upper-limb prosthesis control: Studies on targeted motion. Acm Trans. Appl. Percept. 2008;7:1–23. doi: 10.1145/1773965.1773966. DOI

Patwardhan S., Dhawan A.S., Mukherjee B., Alzamani M., Joiner W.M., Sikdar S. Evaluation of the Role of Proprioception During Proportional Position Control Using Sonomyography: Applications in Prosthetic Control. IEEE Int. Conf. Rehabil. Robot. 2019;2019:830–836. doi: 10.1109/ICORR.2019.8779559. PubMed DOI

Stephens-Fripp B., Alici G., Mutlu R. A Review of Non-Invasive Sensory Feedback Methods for Transradial Prosthetic Hands. IEEE Access. 2018;6:6878–6899. doi: 10.1109/ACCESS.2018.2791583. DOI

Nemah M.N., Low C.Y., Aldulaymi O.H., Ong P., Ismail A.E., Qasim A.A. A Review of Non-Invasive Haptic Feedback stimulation Techniques for Upper Extremity Prostheses. Int. J. Integr. Eng. 2019;11 doi: 10.30880/ijie.2019.11.01.030. DOI

Grill W.M., Norman S.E., Bellamkonda R.V. Implanted neural interfaces: Biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 2009;11:1–24. doi: 10.1146/annurev-bioeng-061008-124927. PubMed DOI

Saal H.P., Bensmaia S.J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia. 2015;79:344–353. doi: 10.1016/j.neuropsychologia.2015.06.010. PubMed DOI

Roche A.D., Rehbaum H., Farina D., Aszmann O.C. Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Curr. Surg. Rep. 2014;2:44. doi: 10.1007/s40137-013-0044-8. DOI

i-Limb® Ultra. [(accessed on 4 August 2020)]; Available online: https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra,/prosthetics/arms/i-limb-ultra.

Smith L.H., Hargrove L.J. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013;2013:4223–4226. doi: 10.1109/EMBC.2013.6610477. PubMed DOI PMC

Geethanjali P. Myoelectric control of prosthetic hands: State-of-the-art review. Med. Devices. 2016;9:247–255. doi: 10.2147/MDER.S91102. PubMed DOI PMC

Yildiz K.A., Shin A.Y., Kaufman K.R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: A review. J. Neuroeng. Rehabil. 2020;17:43. doi: 10.1186/s12984-020-00667-5. PubMed DOI PMC

Ohnishi K., Weir R.F., Kuiken T.A. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev. Med. Devices. 2007;4:43–53. doi: 10.1586/17434440.4.1.43. PubMed DOI

Cloutier A., Yang J. Control of Hand Prostheses: A Literature Review. Volume 6 American Society of Mechanical Engineers (ASME); New York, NY, USA: 2013.

Luca C.J.D. Surface electromyography detection and recording. Delsys. Inc. 2002;10:10.

Muceli S., Bergmeister K.D., Hoffmann K.-P., Aman M., Vukajlija I., Aszmann O.C., Farina D. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. J. Neural Eng. 2018;16:016010. doi: 10.1088/1741-2552/aaed85. PubMed DOI

Weir R.F.F., Troyk P.R., DeMichele G.A., Kerns D.A., Schorsch J.F., Maas H. Implantable Myoelectric Sensors (IMESs) for Intramuscular Electromyogram Recording. IEEE Trans. Biomed. Eng. 2008;56:159–171. doi: 10.1109/TBME.2008.2005942. PubMed DOI PMC

Pasquina P.F., Evangelista M., Carvalho A.J., Lockhart J., Griffin S., Nanos G., McKay P., Hansen M., Ipsen D., Vandersea J., et al. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods. 2015;244:85–93. doi: 10.1016/j.jneumeth.2014.07.016. PubMed DOI PMC

Li Q., Li B. Online Finger Gesture Recognition Using Surface Electromyography Signals. J. Signal Inf. Process. 2013;4:101–105. doi: 10.4236/jsip.2013.42013. DOI

Muceli S., Farina D. Simultaneous and Proportional Estimation of Hand Kinematics From EMG During Mirrored Movements at Multiple Degrees-of-Freedom. IEEE Trans. Neural. Syst. Rehabil. Eng. 2012;20:371–378. doi: 10.1109/TNSRE.2011.2178039. PubMed DOI

Amma C., Krings T., Böer J., Schultz T. Advancing Muscle-Computer Interfaces with High-Density Electromyography; Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems—CHI ’15; Seoul, Korea. 18–23 April 2015; New York, NY, USA: Association for Computing Machinery (ACM) Press; 2015. pp. 929–938.

Artemiadis P.K., Kyriakopoulos K.J. An EMG-Based Robot Control Scheme Robust to Time-Varying EMG Signal Features. IEEE Trans. Inf. Technol. Biomed. 2010;14:582–588. doi: 10.1109/TITB.2010.2040832. PubMed DOI

Farina D., Jiang N., Rehbaum H., Holobar A., Graimann B., Dietl H., Aszmann O.C. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014;22:797–809. doi: 10.1109/TNSRE.2014.2305111. PubMed DOI

Hahne J.M., Farina D., Jiang N., Liebetanz D. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control. Front. Neurosci. 2016;10 doi: 10.3389/fnins.2016.00114. PubMed DOI PMC

Biddiss E.A., Chau T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007;31:236–257. doi: 10.1080/03093640600994581. PubMed DOI

Webster J.G. Electrical Impedance Tomography. Adam Hilger; London, UK: 1990.

Li J., Staats W.L., Spieker A., Sung M., Rutkove S.B. A Technique for Performing Electrical Impedance Myography in the Mouse Hind Limb: Data in Normal and ALS SOD1 G93A Animals. PLoS ONE. 2012;7:e45004. doi: 10.1371/journal.pone.0045004. PubMed DOI PMC

Orschulik J.R., Menden T. Optimizing the Measurement Frequency in Electrical Impedance Tomography. Czech Technical University; Prague, Czech Republic: 2017.

Ma G., Hao Z., Wu X., Wang X. An optimal Electrical Impedance Tomography drive pattern for human-computer interaction applications. IEEE Trans. Biomed. Circuits Syst. 2020;14:402–411. doi: 10.1109/TBCAS.2020.2967785. PubMed DOI

Dowrick T., Blochet C., Holder D. In vivo bioimpedance measurement of healthy and ischaemic rat brain: Implications for stroke imaging using electrical impedance tomography. Physiol. Meas. 2015;36:1273–1282. doi: 10.1088/0967-3334/36/6/1273. PubMed DOI

Wu Y., Jiang D., Liu X., Bayford R., Demosthenous A. A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control. IEEE Trans. Biomed. Circuits Syst. 2018;12:1322–1333. doi: 10.1109/TBCAS.2018.2878395. PubMed DOI

Zhang Y., Harrison C. Tomo: Wearable, Low-Cost Electrical Impedance Tomography for Hand Gesture Recognition; Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology-UIST ’15; Daegu, Kyungpook, Korea. 8–11 November 2015; New York, NY, USA: Association for Computing Machinery (ACM) Press; 2015. pp. 167–173.

Zhang Y., Xiao R., Harrison C. Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography; Proceedings of the 29th Annual Symposium on User Interface Software and Technology; Tokyo, Japan. 16–19 October 2016; New York, NY, USA: Association for Computing Machinery (ACM) Press; 2016. pp. 843–850.

Schaefer M.S., Wania V., Bastin B., Schmalz U., Kienbaum P., Beiderlinden M., Treschan T.A. Electrical impedance tomography during major open upper abdominal surgery: A pilot-study. BMC Anesth. 2014;14:51. doi: 10.1186/1471-2253-14-51. PubMed DOI PMC

Bera T.K., Nagaraju J. A multifrequency Electrical Impedance Tomography (EIT) system for biomedical imaging; Proceedings of the 2012 International Conference on Signal Processing and Communications (SPCOM); Bangalore, India. 22–25 July 2012; pp. 1–5.

Izzetoglu K., Bunce S., Izzetoglu M., Onaral B., Pourrezaei K. Functional near-infrared neuroimaging; Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Francisco, CA, USA. 1–5 September 2004; pp. 5333–5336. PubMed

Paleari M., Luciani R., Ariano P. Towards NIRS-based hand movement recognition; Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR); London, UK. 17–20 July 2017; pp. 1506–1511. PubMed

Guo W., Sheng X., Liu H., Zhu X. Development of a Multi-Channel Compact-Size Wireless Hybrid sEMG/NIRS Sensor System for Prosthetic Manipulation. IEEE Sens. J. 2015;16:447–456. doi: 10.1109/JSEN.2015.2459067. DOI

Zhao T., Liu J., Wang Y., Liu H., Chen Y. Towards Low-cost Sign Language Gesture Recognition Leveraging Wearables. IEEE Trans. Mob. Comput. 2019;1 doi: 10.1109/TMC.2019.2962760. DOI

Everdell N.L., Airantzis D., Kolvya C., Suzuki T., Elwell C.E. A portable wireless near-infrared spatially resolved spectroscopy system for use on brain and muscle. Med. Eng. Phys. 2013;35:1692–1697. doi: 10.1016/j.medengphy.2013.04.011. PubMed DOI

Herrmann S., Attenberger A., Buchenrieder K. Prostheses Control with Combined Near-Infrared and Myoelectric Signals. In: Moreno-Díaz R., Pichler F., Quesada-Arencibia A., editors. Computer Aided Systems Theory—EUROCAST 2011. Volume 6928. Springer; Berlin/Heidelberg, Germany: 2012. pp. 601–608. Lecture Notes in Computer Science.

Bianchi T., Zambarbieri D., Beltrami G., Verni G. NIRS monitoring of muscle contraction to control a prosthetic device; Proceedings of the Biomedical Sensors, Fibers, and Optical Delivery Systems; Stockholm, Sweden. 8–12 September 1998; pp. 157–163.

Guo W., Sheng X., Liu H., Zhu X. Toward an Enhanced Human-Machine Interface for Upper-Limb Prosthesis Control with Combined EMG and NIRS Signals. IEEE Trans. Hum. Mach. Syst. 2017;47:564–575. doi: 10.1109/THMS.2016.2641389. DOI

Zheng Y.P., Chan M.M.F., Shi J., Chen X., Huang Q.H. Sonomyography: Monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med. Eng. Phys. 2006;28:405–415. doi: 10.1016/j.medengphy.2005.07.012. PubMed DOI

Shi J., Zheng Y.-P., Huang Q.-H., Chen X. Continuous monitoring of sonomyography, electromyography and torque generated by normal upper arm muscles during isometric contraction: Sonomyography assessment for arm muscles. IEEE Trans. Biomed. Eng. 2008;55:1191–1198. doi: 10.1109/TBME.2007.909538. PubMed DOI

Castellini C., Hertkorn K., Sagardia M., González D.S., Nowak M. A virtual piano-playing environment for rehabilitation based upon ultrasound imaging; Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; Sao Paulo, Brazil. 12–15 August 2014; pp. 548–554.

Castellini C., Passig G. Ultrasound image features of the wrist are linearly related to finger positions; Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; San Francisco, CA, USA. 25–30 September 2011.

Castellini C., Passig G., Zarka E. Using Ultrasound Images of the Forearm to Predict Finger Positions. IEEE Trans. Neural Syst. Rehabil. Eng. 2012;20:788–797. doi: 10.1109/TNSRE.2012.2207916. PubMed DOI

Akhlaghi N., Baker C.A., Lahlou M., Zafar H., Murthy K.G., Rangwala H., Kosecka J., Joiner W.M., Pancrazio J.J., Sikdar S. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles. IEEE Trans. Biomed. Eng. 2016 doi: 10.1109/TBME.2015.2498124. PubMed DOI

Dhawan A.S., Mukherjee B., Patwardhan S., Akhlaghi N., Diao G., Levay G., Holley R., Joiner W.M., Harris-Love M., Sikdar S. Proprioceptive Sonomyographic Control: A novel method for intuitive and proportional control of multiple degrees-of-freedom for individuals with upper extremity limb loss. Sci. Rep. 2019;9:9499. doi: 10.1038/s41598-019-45459-7. PubMed DOI PMC

McIntosh J., Marzo A., Fraser M., Phillips C. EchoFlex: Hand Gesture Recognition using Ultrasound Imaging; Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems; Denver, CO, USA. 6–11 May 2017; New York, NY, USA: Association for Computing Machinery (ACM); 2017. pp. 1923–1934.

Sikdar S., Rangwala H., Eastlake E.B., Hunt I.A., Nelson A.J., Devanathan J., Shin A., Pancrazio J.J. Novel Method for Predicting Dexterous Individual Finger Movements by Imaging Muscle Activity Using a Wearable Ultrasonic System. IEEE Trans. Neural Syst. Rehabil. Eng. 2013;22:69–76. doi: 10.1109/TNSRE.2013.2274657. PubMed DOI

Yang X., Sun X., Zhou D., Li Y., Liu H. Towards Wearable A-Mode Ultrasound Sensing for Real-Time Finger Motion Recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:1199–1208. doi: 10.1109/TNSRE.2018.2829913. PubMed DOI

Hettiarachchi N., Ju Z., Liu H. A New Wearable Ultrasound Muscle Activity Sensing System for Dexterous Prosthetic Control; Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics; Hong Kong, China. 9–12 October 2015; pp. 1415–1420.

Li Y., He K., Sun X., Liu H. Human-machine interface based on multi-channel single-element ultrasound transducers: A preliminary study; Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom); Munich, Germany. 14–16 September 2016; pp. 1–6.

Xingchen Y., Yan J., Chen Z., Ding H., Liu H. A Proportional Pattern Recognition Control Scheme for Wearable A-mode Ultrasound Sensing. IEEE Trans. Ind. Electron. 2019;67:800–808. doi: 10.1109/TIE.2019.2898614. DOI

Iravantchi Y., Zhang Y., Bernitsas E., Goel M., Harrison C. Interferi: Gesture Sensing using On-Body Acoustic Interferometry; Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems; Glasgow, UK. 4–9 May 2019; pp. 1–13.

Guo J.-Y., Zheng Y.-P., Kenney L.P., Xie H.-B. Evaluation of sonomyography (SMG) for control compared with electromyography (EMG) in a discrete target tracking task; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 2–6 September 2009; pp. 1549–1552. PubMed

Youjia H., Liu H. Performances of surface EMG and Ultrasound signals in recognizing finger motion; Proceedings of the 2016 9th International Conference on Human System Interactions (HSI); Portsmouth, UK. 6–8 July 2016; pp. 117–122.

Huang Y., Yang X., Li Y., Zhou D., He K., Liu H. Ultrasound-Based Sensing Models for Finger Motion Classification. IEEE J. Biomed. Health Inform. 2018;22:1395–1405. doi: 10.1109/JBHI.2017.2766249. PubMed DOI

Wang Z., Fang Y., Zhou D., Li K., Cointet C., Liu H. Ultrasonography and electromyography based hand motion intention recognition for a trans-radial amputee: A case study. Med. Eng. Phys. 2020;75:45–48. doi: 10.1016/j.medengphy.2019.11.005. PubMed DOI

Lilja M., Hoffmann P., Öberg T. Morphological changes during early trans-tibial prosthetic fitting. Prosthet. Orthot. Int. 1998;22:115–122. doi: 10.3109/03093649809164472. PubMed DOI

Ogasawara R., Thiebaud R.S., Loenneke J.P., Loftin M., Abe T. Time course for arm and chest muscle thickness changes following bench press training. Interv. Med. Appl. Sci. 2012;4:217–220. doi: 10.1556/IMAS.4.2012.4.7. PubMed DOI PMC

Yang X., Zhou D., Zhou Y., Huang Y., Liu H. Towards Zero Re-Training for Long-Term Hand Gesture Recognition via Ultrasound Sensing. IEEE J. Biomed. Health Inf. 2019;23:1639–1646. doi: 10.1109/JBHI.2018.2867539. PubMed DOI

Xia W., Zhou Y., Yang X., He K., Liu H. Toward Portable Hybrid Surface Electromyography/A-Mode Ultrasound Sensing for Human–Machine Interface. IEEE Sens. J. 2019;19:5219–5228. doi: 10.1109/JSEN.2019.2903532. DOI

Dementyev A., Paradiso J. WristFlex: Low-power gesture input with wrist-worn pressure sensors; Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology; Honolulu, HI, USA. 5–8 October 2014.

Wang W., Liang X., Assaad M., Heidari H. Wearable Wristworn Gesture Recognition Using Echo State Network; Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS); Genova, Italy. 27–29 November 2019; pp. 875–878.

Amft O., Junker H., Lukowicz P., Troster G., Schuster C. Sensing muscle activities with body-worn sensors; Proceedings of the Wearable and Implantable Body Sensor Networks (BSN) 2006, International Workshop; Cambridge, UK. 3–5 April 2006; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2006. pp. 4–141.

Fujiwara E., Wu Y.T., Suzuki C.K., de Andrade D.T.G., Neto A.R., Rohmer E. Optical fiber force myography sensor for applications in prosthetic hand control; Proceedings of the 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC); Tokyo, Japan. 9–11 March 2018; pp. 342–347.

Truong H., Vu T., Zhang S., Muncuk U., Nguyen P., Bui N., Nguyen A., Lv Q., Chowdhury K., Dinh T. CapBand: Battery-free Successive Capacitance Sensing Wristband for Hand Gesture Recognition; Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems; Shenzhen, China. 4–7 November 2018; pp. 54–67.

Kenney L.P.J., Lisitsa I., Bowker P., Heath G.H., Howard D. Dimensional change in muscle as a control signal for powered upper limb prostheses: A pilot study. Med. Eng. Phys. 1999;21:589–597. doi: 10.1016/S1350-4533(99)00089-2. PubMed DOI

Shull P.B., Jiang S., Zhu Y., Zhu X. Hand Gesture Recognition and Finger Angle Estimation via Wrist-Worn Modified Barometric Pressure Sensing. IEEE Trans. Neural Syst. Rehabil. Eng. 2019;27:724–732. doi: 10.1109/TNSRE.2019.2905658. PubMed DOI

Jiang S., Li L., Xu H., Xu J., Gu G. Stretchable E-Skin Patch for Gesture Recognition on the Back of the Hand. IEEE Trans. Ind. Electron. 2019;67:647–657. doi: 10.1109/TIE.2014.2316222. DOI

Stefanou T., Chance G., Assaf T., Dogramadzi S. Tactile Signatures and Hand Motion Intent Recognition for Wearable Assistive Devices. Front. Robot. AI. 2019;6 doi: 10.3389/frobt.2019.00124. PubMed DOI PMC

Belyea A., Englehart K., Scheme E. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control. IEEE Trans. Biomed. Eng. 2019;66:3098–3104. doi: 10.1109/TBME.2019.2900415. PubMed DOI

Radmand A., Scheme E., Englehart K. High-density force myography: A possible alternative for upper-limb prosthetic control. J. Rehabil. Res. Dev. 2016;53:443–456. doi: 10.1682/JRRD.2015.03.0041. PubMed DOI

Kadkhodayan A., Jiang X., Menon C. Continuous Prediction of Finger Movements Using Force Myography. J. Med. Biol. Eng. 2016;36:594–604. doi: 10.1007/s40846-016-0151-y. DOI

Sadarangani G.P., Jiang X., Simpson L.A., Eng J.J., Menon C. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment. Front. Bioeng. Biotechnol. 2017;5 doi: 10.3389/fbioe.2017.00042. PubMed DOI PMC

Cho E., Chen R., Merhi L.-K., Xiao Z., Pousett B., Menon C. Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study. Front. Bioeng. Biotechnol. 2016;4 doi: 10.3389/fbioe.2016.00018. PubMed DOI PMC

Jiang S., Gao Q., Liu H., Shull P.B. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition. Sens. Actuators A: Phys. 2020;301:111738. doi: 10.1016/j.sna.2019.111738. DOI

Orizio C. Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies. Crit. Rev. Biomed. Eng. 1993;21:201–243. PubMed

Courteville A., Gharbi T., Cornu J.Y. MMG measurement: A high-sensitivity microphone-based sensor for clinical use. IEEE Trans. Biomed. Eng. 1998;45:145–150. doi: 10.1109/10.661262. PubMed DOI

Scalise L., Casaccia S., Marchionni P., Ercoli I., Tomasini E.P. Muscle activity characterization by laser Doppler Myography. J. Phys. Conf. Ser. 2013;459:012017. doi: 10.1088/1742-6596/459/1/012017. PubMed DOI PMC

Scalise L., Casaccia S., Marchionni P., Ercoli I., Tomasini E. Laser doppler myography (LDMi): A novel non-contact measurement method for the muscle activity. Laser. 2013;22:261–268. doi: 10.5978/islsm.13-OR-21. PubMed DOI PMC

Casaccia S., Scalise L., Casacanditella L., Tomasini E.P., Rohrbaugh J.W. Non-contact assessment of muscle contraction: Laser Doppler Myography; Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA); Torino, Italy. 7–9 May 2015; pp. 610–615.

Barry D.T., Leonard J.A., Gitter A.J., Ball R.D. Acoustic myography as a control signal for externally powered prosthesis. Arch. Phys. Med. Rehabil. 1986;67:267–269. PubMed

Silva J., Heim W., Chau T. A Self-Contained, Mechanomyography-Driven Externally Powered Prosthesis. Arch. Phys. Med. Rehabil. 2005;86:2066–2070. doi: 10.1016/j.apmr.2005.03.034. PubMed DOI

Wilson S., Vaidyanathan R. Upper-limb prosthetic control using wearable multichannel mechanomyography. IEEE Int. Conf. Rehabil. Robot. 2017;2017:1293–1298. doi: 10.1109/ICORR.2017.8009427. PubMed DOI

Silva J., Chau T., Goldenberg A.A. MMG-Based Multisensor Data Fusion for Prosthesis Control; Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Cancun, Mexico. 17–21 September 2003; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2003. pp. 2909–2912.

Esposito D., Andreozzi E., Fratini A., Gargiulo G.D., Savino S., Niola V., Bifulco P. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography. Sensors. 2018 doi: 10.3390/s18082553. PubMed DOI PMC

Lei K.F., Tsai W.-W., Lin W.-Y., Lee M.-Y. MMG-torque estimation under dynamic contractions; Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics; Anchorage, AK, USA. 9–12 October 2011; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2011. pp. 585–590.

Ni D., Chen X., Yi W., Zheng Y.-P., Zhu Z., Chan S.-C. In vivo behavior of human muscle during isometric ramp contraction: A simultaneous EMG, MMG and ultrasonography investigation; Proceedings of the 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012); Hong Kong, China. 12–15 August 2012; pp. 59–62.

Guo W., Sheng X., Liu H., Zhu X. Mechanomyography Assisted Myoeletric Sensing for Upper-Extremity Prostheses: A Hybrid Approach. IEEE Sens. J. 2017;17:3100–3108. doi: 10.1109/JSEN.2017.2679806. DOI

Gregori B., Galié E., Accornero N. Surface electromyography and mechanomyography recording: A new differential composite probe. Med. Biol. Eng. Comput. 2003;41:665–669. doi: 10.1007/BF02349974. PubMed DOI

Rekimoto J. GestureWrist and GesturePad: Unobtrusive wearable interaction devices; Proceedings of the Fifth International Symposium on Wearable Computers; Zurich, Switzerland. 8–9 October 2001; pp. 21–27.

Cheng J., Bahle G., Lukowicz P. A simple wristband based on capacitive sensors for recognition of complex hand motions; Proceedings of the 2012 IEEE SENSORS; Taipei, Taiwan. 28–31 October 2012; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2012. pp. 1–4.

Cheng J., Amft O., Bahle G., Lukowicz P. Designing Sensitive Wearable Capacitive Sensors for Activity Recognition. IEEE Sens. J. 2013;13:3935–3947. doi: 10.1109/JSEN.2013.2259693. DOI

Nissler C., Mouriki N., Castellini C., Belagiannis V., Navab N. OMG: Introducing optical myography as a new human machine interface for hand amputees; Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR); Singapore. 11–14 August 2015; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2015. pp. 937–942.

Nissler C., Mouriki N., Castellini C. Optical Myography: Detecting Finger Movements by Looking at the Forearm. Front. Neurorobot. 2016;10 doi: 10.3389/fnbot.2016.00003. PubMed DOI PMC

Wu Y.T., Fujiwara E., Suzuki C.K. Optical myography system for posture monitoring; Proceedings of the 2016 IEEE International Symposium on Consumer Electronics (ISCE); Sao Paulo, Brazil. 28–30 September 2016; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2016. pp. 37–38.

Wu Y.T., Fujiwara E., Suzuki C.K. Evaluation of Optical Myography Sensor as Predictor of Hand Postures. IEEE Sens. J. 2019;19:5299–5306. doi: 10.1109/JSEN.2019.2905229. DOI

Sanders J., Harrison D., Myers T., Allyn K. Effects of elevated vacuum on in-socket residual limb fluid volume: Case study results using bioimpedance analysis. J. Rehabil. Res. Dev. 2011;48:1231–1248. doi: 10.1682/JRRD.2010.11.0219. PubMed DOI PMC

Cohen D., Givler E. Magnetomyography: Magnetic fields around the human body produced by skeletal muscles. Appl. Phys. Lett. 1972;21:114–116. doi: 10.1063/1.1654294. DOI

Parker K.K., Wikswo J.P. A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle. IEEE Trans. Biomed. Eng. 1997;44:948–957. doi: 10.1109/10.634647. PubMed DOI

Zuo S., Heidari H., Farina D., Nazarpour K. Miniaturized Magnetic Sensors for Implantable Magnetomyography. Adv. Mater. Technol. 2020;5:2000185. doi: 10.1002/admt.202000185. DOI

Ustinin M.H., Ustinin M. Reconstruction of the Human Hand Functional Structure Based on a Magnetomyogram. Maтeмaтичecкaя Биoлoгия И Биoинφopмaтикa. 2018;13:480–489. doi: 10.17537/2018.13.480. DOI

Reincke M. Magnetomyographie mit dem SQUID—Magnetomyography with the SQUID. Biomed. Tech. Eng. 1993;38:276–281. doi: 10.1515/bmte.1993.38.11.276. PubMed DOI

Heidari H., Zuo S., Krasoulis A., Nazarpour K. CMOS Magnetic Sensors for Wearable Magnetomyography; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 17–21 July 2018; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2018. pp. 2116–2119. PubMed

Zuo S., Schmalz J., Ozden M.-O., Gerken M., Su J., Niekiel F., Lofink F., Nazarpour K., Heidari H. Ultrasensitive Magnetoelectric Sensing System for pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst. 2020;1 doi: 10.1109/TBCAS.2020.2998290. PubMed DOI

Elzenheimer E., Laufs H., Schulte-Mattler W., Schmidt G. Magnetic Measurement of Electrically Evoked Muscle Responses with Optically Pumped Magnetometers. IEEE Trans. Neural Syst. Rehabil. Eng. 2020;28:756–765. doi: 10.1109/TNSRE.2020.2968148. PubMed DOI

Masuda T., Endo H., Takeda T. Magnetic fields produced by single motor units in human skeletal muscles. Clin. Neurophysiol. 1999;110:384–389. doi: 10.1016/S1388-2457(98)00021-2. PubMed DOI

Tropea P., Mazzoni A., Micera S., Corbo M. Giuliano Vanghetti and the innovation of “cineplastic operations”. Neurology. 2017;89:1627–1632. doi: 10.1212/WNL.0000000000004488. PubMed DOI PMC

Beasley R.W. The Tendon Exteriorization Cineplasty, A Preliminary Report. Inter-Clin. Inf. Bull. 1966;5:6–8.

Simpson D.C. The Control of Upper-Extremity Prostheses and Orthoses. Charles C Thomas Publisher; Springfield, IL, USA: 1974. The choice of control system for the multimovement prosthesis: Extended physiological proprioception (EPP) pp. 146–150.

Doubler J.A., Childress D.S. An analysis of extended physiological proprioception as a prosthesis-control technique. J. Rehabil. Res. Dev. 1984;21:5–18. PubMed

Weir R.F., Heckathorne C.W., Childress D.S. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 2001;38:357–363. PubMed

Mablekos-Alexiou A., Bertos G.A., Papadopoulos E. A biomechatronic Extended Physiological Proprioception (EPP) controller for upper-limb prostheses; Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. 28 September–2 October 2015; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2015. pp. 6173–6178.

Kontogiannopoulos S., Vangelatos Z., Bertos G.A., Papadopoulos E. A Biomechatronic EPP upper-limb prosthesis controller and its performance comparison to other topologies; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 17–21 July 2018; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2018. pp. 1755–1758. PubMed

Kontogiannopoulos S., Bertos G.A., Papadopoulos E. A “Biomechatronic EPP” Upper-Limb Prosthesis Control Configuration and its performance comparison to other control configurations. IEEE Trans. Med. Robot. Bionics. 2020;1 doi: 10.1109/TMRB.2020.2980077. DOI

Koukoulas N., Bertos G.A., Mablekos-Alexiou A., Papadopoulos E. A Biomechatronic EPP upper-limb prosthesis teleoperation system implementation using Bluetooth Low Energy; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 17–21 July 2018; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE); 2018. pp. 1–4. PubMed

Tarantino S., Clemente F., Barone D., Controzzi M., Cipriani C. The myokinetic control interface: Tracking implanted magnets as a means for prosthetic control. Sci. Rep. 2017;7:17149. doi: 10.1038/s41598-017-17464-1. PubMed DOI PMC

ERC . Myki—A Bidirectional MYoKinetic Implanted Interface for Natural Control of Artificial Limbs. European Research Council (ERC); Brussels, Belgium: 2020.

Clemente F., Ianniciello V., Gherardini M., Cipriani C. Development of an Embedded Myokinetic Prosthetic Hand Controller. Sensors. 2019;19:3137. doi: 10.3390/s19143137. PubMed DOI PMC

Tarantino S., Clemente F., De Simone A., Cipriani C. Feasibility of Tracking Multiple Implanted Magnets with a Myokinetic Control Interface: Simulation and Experimental Evidence Based on the Point Dipole Model. IEEE Trans. Biomed. Eng. 2020;67:1282–1292. doi: 10.1109/TBME.2019.2935229. PubMed DOI

D’Anna E., Valle G., Mazzoni A., Strauss I., Iberite F., Patton J., Petrini F.M., Raspopovic S., Granata G., Iorio R.D., et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 2019;4 doi: 10.1126/scirobotics.aau8892. PubMed DOI

Clites T.R., Carty M.J., Ullauri J.B., Carney M.E., Mooney L.M., Duval J.-F., Srinivasan S.S., Herr H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aap8373. PubMed DOI

Clites T.R., Carty M.J., Srinivasan S., Zorzos A.N., Herr H.M. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J. Neural Eng. 2017;14:036002. doi: 10.1088/1741-2552/aa614b. PubMed DOI

Goodwin G.M., McCloskey D.I., Matthews P.B. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 1972;95:705–748. doi: 10.1093/brain/95.4.705. PubMed DOI

Taylor M.W., Taylor J.L., Seizova-Cajic T. Muscle Vibration-Induced Illusions: Review of Contributing Factors, Taxonomy of Illusions and User’s Guide. Multisens. Res. 2017;30:25–63. doi: 10.1163/22134808-00002544. DOI

Schofield J.S., Dawson M.R., Carey J.P., Hebert J.S. Characterizing the effects of amplitude, frequency and limb position on vibration induced movement illusions: Implications in sensory-motor rehabilitation. Technol. Health Care. 2015;23:129–141. doi: 10.3233/THC-140879. PubMed DOI PMC

Eklund G., Hagbarth K.E. Normal variability of tonic vibration reflexes in man. Exp. Neurol. 1966;16:80–92. doi: 10.1016/0014-4886(66)90088-4. PubMed DOI

Guglielmotti M.B., Olmedo D.G., Cabrini R.L. Research on implants and osseointegration. Periodontology. 2019;79:178–189. doi: 10.1111/prd.12254. PubMed DOI

Shah F.A., Thomsen P., Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1–15. doi: 10.1016/j.actbio.2018.11.018. PubMed DOI

Krasoulis A., Kyranou I., Erden M.S., Nazarpour K., Vijayakumar S. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. J. Neuroeng. Rehabil. 2017;14 doi: 10.1186/s12984-017-0284-4. PubMed DOI PMC

Radmand A., Scheme E., Englehart K. On the Suitability of Integrating Accelerometry Data with Electromyography Signals for Resolving the Effect of Changes in Limb Position during Dynamic Limb Movement. J. Prosthet. Orthot. 2014;26:185–193. doi: 10.1097/JPO.0000000000000041. DOI

Khushaba R.N., Al-Timemy A., Kodagoda S., Nazarpour K. Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl. 2016;61:154–161. doi: 10.1016/j.eswa.2016.05.031. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...