Stable body size of Alpine ungulates
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32874622
PubMed Central
PMC7428221
DOI
10.1098/rsos.200196
PII: rsos200196
Knihovny.cz E-zdroje
- Klíčová slova
- Alpine ungulates, Bergmann's rule, biometric monitoring, climate change, metabolic rate, organism shrinking,
- Publikační typ
- časopisecké články MeSH
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
Department of Geography Faculty of Science Masaryk University 613 00 Brno Czech Republic
Department of Geography University of Cambridge Downing Place CB2 3EN UK
Department of Physical Geography Stockholm University SE 10691 Stockholm Sweden
Global Change Research Centre 603 00 Brno Czech Republic
Swiss Federal Research Institute WSL Zürcherstr 111 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Bergmann C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien 3, 595–708.
Darwin C. 1859. On the origin of species, p. 502 London, UK: John Murray.
Sheridan JA, Bickford D. 2011. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406. (10.1038/nclimate1259) DOI
Caruso NM, Sears MW, Adams DC, Lips KR. 2015. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20, 1751–1759. (10.1111/gcb.12550) PubMed DOI
Tseng M, et al. 2017. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87, 647–659. (10.1111/1365-2656.12789) PubMed DOI
Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291. (10.1016/j.tree.2011.03.005) PubMed DOI
Gibert JP, DeLong JP. 2014. Temperature alters food web body-size structure. Biol. Lett. 10, 20140473 (10.1098/rsbl.2014.0473) PubMed DOI PMC
Legagneux P, et al. 2014. Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nat. Clim. Change 4, 379–383. (10.1038/nclimate2168) DOI
Horne CR, Hirst AG, Atkinson D. 2017. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc. R. Soc. B 284, 20170238 (10.1098/rspb.2017.0238) PubMed DOI PMC
MacLean SA, Beissinger SR. 2017. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105. (10.1111/gcb.13736) PubMed DOI
Lindmark M, Huss M, Ohlberger J, Grådmark A. 2018. Temperature-dependent body size effects determine population responses to climate warming. Ecol. Lett. 21, 181–189. (10.1111/ele.12880) PubMed DOI
Yom-Tov Y. 2001. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. Lond. B 268, 947–952. (10.1098/rspb.2001.1592) PubMed DOI PMC
Gardner JL, Heinsohn R, Joseph L. 2009. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852. (10.1098/rspb.2009.1011) PubMed DOI PMC
Gardner JL, Amano T, Backwell PRY, Ikin K, Sutherland WJ, Peters A. 2014. Temporal patterns of avian body size reflect linear size responses to broadscale environmental change over the last 50 years. J. Avian Biol. 45, 529–535. (10.1111/jav.00431) DOI
Remacha C, Rodríguez C, de la Puente J, Pérez-Tris J. 2020. Climate change and maladaptive wing shortening in a long-distance migratory bird. Auk 137, 1–15.
Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T. 2009. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467. (10.1126/science.1173668) PubMed DOI PMC
Rughetti M, Festa-Bianchet M. 2012. Effects of spring–summer temperature on body mass of chamois. J. Mammal. 93, 1301–1307. (10.1644/11-MAMM-A-402.1) DOI
Mason THE, Apollonio M, Chirichella R, Willis SG, Stephens PA. 2014. Environmental change and long-term body mass declines in an alpine mammal. Front. Zool. 11, 69 (10.1186/s12983-014-0069-6) DOI
van Gils JA, et al. 2016. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821. (10.1126/science.aad6351) PubMed DOI
Hoy SR, Peterson RO, Vucetich JA. 2017. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Glob. Change Biol. 24, 2488–2497. PubMed
Carey N, Sigwart JD. 2014. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change. Biol. Lett. 10, 20140408 (10.1098/rsbl.2014.0408) PubMed DOI PMC
Kruuk LEB, Osmond HL, Cockburn A. 2015. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird. Glob. Change Biol. 21, 2929–2941. (10.1111/gcb.12926) PubMed DOI
Baar Y, Friedman ALL, Meiri S, Scharf I. 2018. Little effect of climate change on body size of herbivorous beetles. Insect Sci. 25, 309–316. (10.1111/1744-7917.12420) PubMed DOI
Riemer K, Anderson-Teixeira KJ, Smith FA, Harris DJ, Ernest SKM. 2018. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Glob. Ecol. Biogeogr. 27, 958–967. (10.1111/geb.12757) DOI
Coltman DW, O'Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M. 2003. Undesirable evolutionary consequences of trophy hunting. Nature 426, 655–658. (10.1038/nature02177) PubMed DOI
Pérez JM, et al. 2011. Reduced horn size in two wild trophy-hunted species of Caprinae. Wildl. Biol. 17, 102–112. (10.2981/09-102) DOI
Douhard M, Festa-Bianchet M, Pelletier F, Gaillard J-M, Bonenfant C. 2016. Changes in horn size of Stone's sheep over four decades correlate with trophy hunting pressure. Ecol. Appl. 26, 309–321. (10.1890/14-1461) PubMed DOI
Pigeon G, Festa-Bianchet M, Coltman DW, Pelletier F. 2016. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530. (10.1111/eva.12358) PubMed DOI PMC
Büntgen U, Galvan JD, Mysterud A, Krusic PJ, Hülsmann L, Jenny H, Senn J, Bollmann K. 2018. Horn growth variation and hunting selection of the Alpine ibex. J. Anim. Ecol. 87, 1069–1079. (10.1111/1365-2656.12839) PubMed DOI
Festa-Bianchet M, Mysterud A. 2018. Hunting and evolution: theory, evidence, and unknowns. J. Mammal. 99, 1281–1292. (10.1093/jmammal/gyy138) DOI
Di Minin E, Leader-Williams N, Bradshaw CJA. 2016. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102. (10.1016/j.tree.2015.12.006) PubMed DOI
Ripple WJ, Newsome TM, Kerley GI. 2016. Does trophy hunting support biodiversity? A response to Di Minin et al. Trends Ecol. Evol. 31, 495–496. (10.1016/j.tree.2016.03.011) PubMed DOI
Quéméré E, Gaillard J-M, Galan M, Vanpé C, David I, Pellerin M, Kjellander P, Hewison AJM, Pemberton JM. 2018. Between-population differences in the genetic and maternal components of body mass in roe deer. BMC Evol. Biol. 18, 39 (10.1186/s12862-018-1154-9) PubMed DOI PMC
Albon SD, Clutton-Brock TH, Langvatn R. 1992. Cohort variation in reproduction and survival: implications for population demography. In The biology of deer (ed. Brown RD.). Berlin, Germany: Springer.
Clutton-Brock TH, Guinness FE, Albon SD. 1982. Red deer: behavior and ecology of two sexes. Chicago, IL: University of Chicago Press.
Pettorelli N, Gaillard J-M, Van Laere G, Duncan P, Kjellander P, Liberg O, Delmore D, Maillard D. 2002. Variations in adult body mass in roe deer: The effects of population density at birth and of habitat quality: intense selective hunting leads to artificial evolution in horn size. Proc. R. Soc. Lond. B 269, 747–753. PubMed PMC
Clutton-Brock TH, Price OF, MacColl ADC. 1992. Mate retention, harassment, and the evolution of ungulate leks. Behav. Ecol. 3, 234–242. (10.1093/beheco/3.3.234) DOI
Clutton-Brock TH, Albon SD, Guinness FE. 1988. Reproductive success in male and female red deer. In Reproductive success (ed. Clutton-Brock TH.). Chicago, IL: University of Chicago Press.
Côte SD, Festa-Bianchet M. 2001. Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality. Oecologia 127, 230–238. (10.1007/s004420000584) PubMed DOI
Büntgen U, Greuter L, Bollmann K, Jenny H, Liebhold A, Galvan JD, Stenseth NC, Andrew C, Mysterud A. 2017. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere 8, e01761.
Serrano E, Alpizar-Jara R, Morellet N, Jonathan A, Hewison M. 2008. A half a century of measuring ungulate body condition using indices: is it time for a change? Eur. J. Wildl. Res. 54, 675–680. (10.1007/s10344-008-0194-7) DOI
Toïgo C, Gaillard J-M, Van Laere G, Hewison M, Morellet N. 2006. How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29, 301–308. (10.1111/j.2006.0906-7590.04394.x) DOI
R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Hamlin LL, Pac DF, Sime CA, De Simone RM, Dusek GL. 2000. Evaluating the accuracy of ages obtained by two methods for Montana ungulates. J. Wildl. Manag. 64, 441–449. (10.2307/3803242) DOI
Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Linige MA, Appenzeller C. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336. (10.1038/nature02300) PubMed DOI
Muller RA, Curry J, Groom D, Jacobsen R, Perlmutter S, Rohde R, Rosenfeld A, Wickham C, Wurtele J. 2013. Decadal variations in the global atmospheric land temperatures. J. Geophys. Res. A 118, 1–7.
Fox J. 2005. The R commander: a basic statistics graphical user interface to R. J. Stat. Softw. 14, 1–42.
Luterbacher J, et al. 2016. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (10.1088/1748-9326/11/2/024001) DOI
Medhaug I, Stolpe MB, Fischer EM, Knutti R. 2017. Reconciling controversies about the ‘global warming hiatus'. Nature 545, 41–47. (10.1038/nature22315) PubMed DOI
Merilä J. 2012. Evolution in response to climate change: in pursuit of the missing evidence. Bioessays 34, 811–818. (10.1002/bies.201200054) PubMed DOI
Büntgen U, Jenny H, Liebhold A, Mysterud A, Egli S, Nievergelt D, Stenseth NC, Bollmann K. 2014. European springtime temperature synchronizes ibex horn growth across the eastern Swiss Alps. Ecol. Lett. 17, 303–313. (10.1111/ele.12231) PubMed DOI PMC
Yom-Tov Y, Geffen E. 2011. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541. (10.1111/j.1469-185X.2010.00168.x) PubMed DOI
Donald PF, Green RE, Heath MF. 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. R. Soc. Lond. B 268, 25–29. (10.1098/rspb.2000.1325) PubMed DOI PMC
Davis MB, Shaw RG, Etterson JR. 2005. Evolutionary responses to changing climate. Ecology 86, 1704–1714. (10.1890/03-0788) DOI
Yom-Tov Y, Yom-Tov S. 2004. Climatic change and body size in two species of Japanese rodents. Biol. J. Linnean Soc. 82, 263–267. (10.1111/j.1095-8312.2004.00357.x) DOI
Coltman DW, Donoghue PO, Hogg JT, Festa-Bianchet M. 2005. Selection and genetic (co)variance in bighorn sheep. Evolution 59, 1372–1382. (10.1111/j.0014-3820.2005.tb01786.x) PubMed DOI
Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE. 2000. Heritability of fitness in a wild mammal population. Proc. Natl Acad. Sci. USA 97, 698–703. (10.1073/pnas.97.2.698) PubMed DOI PMC
Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB. 2008. Energy uptake and allocation during ontogeny. Science 322, 736–739. (10.1126/science.1162302) PubMed DOI PMC
Martin JGA, Festa-Bianchet M, Côté SD, Blumstein DT. 2013. Detecting between-individual differences in hind-foot length in populations of wild mammals. Can. J. Zool. 91, 118–123. (10.1139/cjz-2012-0210) DOI
Becciolini V, Bozzi R, Viliani M, Biffani S, Ponzetta MP. 2016. Body measurements from selective hunting: biometric features of red deer (Cervus elaphus) from Northern Apennine, Italy. Ital. J. Anim. Sci. 15, 461–472. (10.1080/1828051X.2016.1186505) DOI
Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510. (10.1016/j.tree.2005.05.011) PubMed DOI
Pettorelli N, et al. 2017. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93. (10.1002/rse2.59) DOI
Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD. 2014. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269. (10.1111/gcb.12568) PubMed DOI
figshare
10.6084/m9.figshare.c.5053595