Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of Pseudomonas putida
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Pseudomonas putida, cellulosome, designer scaffoldin, surface display, synthetic biology,
- MeSH
- beta-glukosidasa metabolismus MeSH
- celulosa metabolismus MeSH
- celulozómy metabolismus MeSH
- chromozomální proteiny, nehistonové chemie MeSH
- Escherichia coli metabolismus MeSH
- genom bakteriální * MeSH
- koheziny MeSH
- membránové proteiny metabolismus MeSH
- metabolické inženýrství metody MeSH
- proteinové domény MeSH
- proteiny buněčného cyklu chemie MeSH
- proteiny z Escherichia coli metabolismus MeSH
- Pseudomonas putida genetika metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- vnější bakteriální membrána metabolismus MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-glukosidasa MeSH
- celulosa MeSH
- chromozomální proteiny, nehistonové MeSH
- membránové proteiny MeSH
- proteiny buněčného cyklu MeSH
- proteiny z Escherichia coli MeSH
- rekombinantní proteiny MeSH
- zelené fluorescenční proteiny MeSH
The bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as lignocellulosic residues or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to address this limitation by adopting a recombinant cellulosome strategy for this host. In this work, we report an essential step in this endeavor-a display of designer enzyme-anchoring protein "scaffoldins", encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were optimally delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric β-glucosidase and fluorescent proteins. Our results not only highlight the value of cell surface engineering for presentation of recombinant proteins on the envelope of Gram-negative bacteria but also pave the way toward designer cellulosome strategies tailored for P. putida.
Citace poskytuje Crossref.org
Building the SynBio community in the Czech Republic from the bottom up: You get what you give