Implication of TRPC3 channel in gustatory perception of dietary lipids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32882106
DOI
10.1111/apha.13554
Knihovny.cz E-zdroje
- Klíčová slova
- Ca2+ signalling, TRPC3 channels, fat taste, fatty acids, lipids,
- MeSH
- chuťová percepce * MeSH
- dietní tuky MeSH
- kationtové kanály TRPC genetika MeSH
- lipidy MeSH
- myši MeSH
- preference v jídle * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dietní tuky MeSH
- kationtové kanály TRPC MeSH
- lipidy MeSH
- TRPC3 cation channel MeSH Prohlížeč
AIM: The pathogenesis of obesity has been associated with high intake of dietary fat, and some recent studies have explored the cellular mechanisms of oro-sensory detection of dietary fatty acids. We further assessed the role of transient receptor potential canonical (TRPC) channels in oro-sensory perception of dietary lipids. METHODS: We determined by RT-qPCR and western blotting the expression of TRPC3/6/7 channels in mouse fungiform taste bud cells (mTBC). Immunocytochemistry was used to explore whether TRPC3 channels were co-expressed with fatty acid receptors. We employed wild-type (WT) mTBC, and those transfected with small interfering RNAs (siRNAs) against TRPC3 or STIM1. Ca2+ signalling was studied in TBC from TRPC3-/- mice and their WT littermates. RESULTS: We demonstrate that mouse fungiform taste bud cells (mTBC) express TRPC3, but not TRPC6 or TRPC7 channels, and their inactivation by siRNA or experiments on TBC from TRPC3-/- mice brought about a decrease in fatty acid-induced gustatory Ca2+ signalling, coupled with taste bud CD36 lipid sensor. TRPC3 channel activation was found to be under the control of STIM1 in lingual mTBC. Behavioural studies showed that spontaneous preference for a dietary long-chain fatty acid was abolished in TRPC3-/- mice, and in mice wherein lingual TRPC3 expression was silenced by employing siRNA. CONCLUSION: We report that lingual TRPC3 channels are critically involved in fat taste perception.
Zobrazit více v PubMed
Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313-1323.
Trebak M, Vazquez G, Bird GSJ, Putney JW Jr. The TRPC3/6/7 subfamily of cation channels. Cell Calcium. 2003;33:451-461.
Birnbaumer L. The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol. 2009;49:395-426.
Zhu X, Jiang M, Peyton M, et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996;85:661-671.
El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem. 2008;283:12949-12959.
Besnard P, Passilly-Degrace P, Khan NA. Taste of fat: a sixth taste modality? Physiol Rev. 2015;96:151-176.
Ozdener MH, Subramaniam S, Sundaresan S, et al. CD36-and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014;146:995-1005.
Dramane G, Abdoul-Azize S, Hichami A, et al. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest. 2012;122:2267-2282.
Murtaza B, Hichami A, Khan AS, et al. Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J Lipid Res. 2020;61:133-142.
Hartmann J, Dragicevic E, Adelsberger H, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron. 2008;59:392-398.
Schleifer H, Doleschal B, Lichtenegger M, et al. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca2+ entry pathways. Br J Pharmacol. 2012;167:1712-1722.
Madani S, Hichami A, Charkaoui-Malki M, Khan NA. Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. J Biol Chem. 2004;279:1176-1183.
Gaillard D, Laugerette F, Darcel N, et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J. 2008;22:1458-1468.
Trebak M, Bird GSJ, McKay RR, Birnbaumer L, Putney JW. Signaling mechanism for receptor-activated TRPC3 channels. J Biol Chem. 2003;278:16244-16252.
Salido GM, Sage SO, Rosado JA. TRPC channels and store-operated Ca2+ entry. Biochim Biophys Acta (BBA)-Mol Cell Res. 2009;1793:223-230.
Liou J, Kim ML, Do Heo W, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235-1241.
Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol. 2007;9:636.
Worley PF, Zeng W, Huang GN, et al. TRPC channels as STIM1-regulated store-operated channels. Cell Calcium. 2007;42:205-211.
Liao Y, Erxleben C, Abramowitz J, et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci. 2008;105:2895-2900.
Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci. 2007;104:4682-4687.
Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC: Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci. 2009;106:3202-3206.
Huang GN, Zeng W, Kim JY, et al. STIM1 carboxyl-terminus activates native SOC, I crac and TRPC1 channels. Nat Cell Biol. 2006;8:1003-1010.
Taruno A, Vingtdeux V, Ohmoto M, et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 2013;495:223.
Liu L, Hansen DR, Kim I, Gilbertson TA. Expression and characterization of delayed rectifying K+ channels in anterior rat taste buds. Am J Physiol Physiol. 2005;289:C868-C880.
Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM. Quantitative measurement of sn-1, 2-diacylglycerols present in platelets, hepatocytes, and ras-and sis-transformed normal rat kidney cells. J Biol Chem. 1986;261:8597-8600.
de Barros JPP, Gautier T, Sali W, et al. Quantitative lipopolysaccharide analysis using liquid chromatography-tandem mass spectrometry and its combination with the limulus amebocyte lysate assay. J Lipid Res. 2015;1356:1363-1369.
Subramaniam S, Ozdener MH, Abdoul-Azize S, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500.
Jiang YY, Cao BB, Wang XQ, Peng YP, Qiu YH. Cerebellar ataxia induced by 3-AP affects immunological function. Neuroendocr Lett. 2015;36:246-256.
Glendinning JI, Gresack J, Spector AC. A high-throughput screening procedure for identifying mice with aberrant taste and oromotor function. Chem Senses. 2002;27:461-474.
Dastugue A, Merlin J, Maquart G, Bernard A, Besnard P. A new method for studying licking behavior determinants in rodents: application to diet-induced obese mice. Obesity. 2018;26:1905-1914.
Ayorinde FO, Garvin K, Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:608-615.