Protein stable isotope probing with H2 18 O differentiated cold stress response at permissive temperatures from general growth at optimal conditions in Escherichia coli K12
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Collaborative Research Centre (Aquadiva)
Deutsche Forschungsgemeinschaft SPP 1656 (Microbiota and Inflammation)
Grantová Agentura České Republiky (20-02022Y)
PubMed
32885498
DOI
10.1002/rcm.8941
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli K12 * chemie metabolismus fyziologie MeSH
- izotopové značení metody MeSH
- izotopy kyslíku * analýza metabolismus MeSH
- nízká teplota MeSH
- proteiny z Escherichia coli * analýza chemie metabolismus MeSH
- reakce na chladový šok fyziologie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- izotopy kyslíku * MeSH
- Oxygen-18 MeSH Prohlížeč
- proteiny z Escherichia coli * MeSH
RATIONALE: Tracing isotopically labeled water into proteins allows for the detection of species-specific metabolic activity in complex communities. However, a stress response may alter the newly synthesized proteins. METHODS: We traced 18-oxygen from heavy water into proteins of Escherichia coli K12 grown from permissive to retardant temperatures. All samples were analyzed using UPLC/Orbitrap Q-Exactive-MS/MS operating in positive electrospray ionization mode. RESULTS: We found that warmer temperatures resulted in significantly (P-value < 0.05) higher incorporation of 18-oxygen as seen by both substrate utilization as relative isotope abundance (RIA) and growth as labeling ratio (LR). However, the absolute number of peptides with incorporation of 18-oxygen showed no significant correlation to temperature, potentially caused by the synthesis of different proteins at low temperatures, namely, proteins related to cold stress response. CONCLUSIONS: Our results unveil the species-specific cold stress response of E. coli K12 that could be misinterpreted as general growth; this is why the quantity as RIA and LR but also the quality as absolute number of peptides with incorporation (relative abundance, RA) and their function must be considered to fully understand the activity of microbial communities.
Zobrazit více v PubMed
Herbst FA, Lünsmann V, Kjeldal H, et al. Enhancing metaproteomics-the value of models and defined environmental microbial systems. Proteomics. 2016;16(5):783-798. https://doi.org/10.1002/pmic.201500305
Von Bergen M, Ehmlich N, Taubert M, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J. 2013;7(10):1877-1885. https://doi.org/10.1038/ismej.2013.78
Bastida F, Jehmlich N, Lima K, et al. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics. 2015;135:162-169. https://doi.org/10.1016/j.jprot.2015.07.023
Jameson E, Taubert M, Coyotzi S, et al. DNA-, RNA-, and protein-based stable-isotope probing for high-throughput biomarker analysis of active microorganisms. Methods Mol Biol. 2017;1539:57-74. https://doi.org/10.1007/978-1-4939-6691-2_5
Jehmlich N, Schmidt F, Von Bergen M, Richnow HH, Vogt C. Protein-based stable isotope probing (protein-SIP) reveals active species within anoxic mixed cultures. ISME J. 2008;2(11):1122-1133. https://doi.org/10.1038/ismej.2008.64
Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics. 2015;15(18):3175-3192. https://doi.org/10.1002/pmic.201500108
Quijada JV, Schmitt ND, Salisbury JP, Auclair JR, Agar JN. Heavy sugar and heavy water create tunable intact protein mass increases for quantitative mass spectrometry in any feed and organism. Anal Chem. 2016;88(22):11139-11146. https://doi.org/10.1021/acs.analchem.6b03234
Seifert J, Taubert M, Jehmlich N, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev. 2012;l31:L683-L697. https://doi.org/10.1002/mas.21346
Taubert M, Vogt C, Wubet T, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6(12):2291-2301. https://doi.org/10.1038/ismej.2012.68
Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26-33. https://doi.org/10.1016/j.copbio.2016.04.010
Starke R, Oliphant K, Jehmlich N, et al. Tracing incorporation of heavy water into proteins for species-specific metabolic activity in complex communities. J Proteomics. 2020;222:10379. https://doi.org/10.1016/j.jprot.2020.103791
Taubert M, Stöckel S, Geesink P, et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol. 2018;20:369-384. https://doi.org/10.1111/1462-2920.14010
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. https://doi.org/10.1038/227680a0
Jehmlich N, Schmidt F, Hartwich M, Von Bergen M, Richnow HH, Vogt C. Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (protein-SIP). Rapid Commun Mass Spectrom. 2008;22(18):2889-2897. https://doi.org/10.1002/rcm.3684
Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4(11):923-925. https://doi.org/10.1038/nmeth1113
Sachsenberg T, Herbst FA, Taubert M, et al. MetaProSIP: Automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14(2):619-627. https://doi.org/10.1021/pr500245w
Röst HL, Sachsenberg T, Aiche S, et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13(9):741-748. https://doi.org/10.1038/nmeth.3959
Cooper VS, Bennett AF, Lenski RE. Evolution of thermal dependence of growth rate of Escherichia Coli populations during 20,000 generations in a constant environment. Evolution. 2001;55(5):889-896. https://doi.org/10.1554/0014-3820(2001)055[0889:eotdog]2.0.co;2
Bronikowski AM, Bennett AF, Lenski RE. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and salmonella enterica from different thermal environments. Evolution. 2001;55(1):33-40. https://doi.org/10.1111/j.0014-3820.2001.tb01270.x
Weber MH, Marahiel MA. Bacterial cold shock responses. Sci Prog. 2003;86(1-2):9-75. https://doi.org/10.3184/003685003783238707
De Maio A. The heat-shock response. New Horiz. 1995;3(1):198-207. https://doi.org/10.1146/annurev.bi.55.070186.005443