Remediation of brownfields contaminated by organic compounds and heavy metals: a bench-scale test of a sulfur/vermiculite sorbent for mercury vapor removal
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
TA04020700
Technology Agency of the Czech Republic
PubMed
32888153
DOI
10.1007/s11356-020-10696-1
PII: 10.1007/s11356-020-10696-1
Knihovny.cz E-resources
- Keywords
- Brownfield remediation, Mercury removal, Thermal desorption, Vermiculite,
- MeSH
- Adsorption MeSH
- Gases MeSH
- Mercury * MeSH
- Aluminum Silicates MeSH
- Sulfur * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gases MeSH
- Mercury * MeSH
- Aluminum Silicates MeSH
- Sulfur * MeSH
- vermiculite MeSH Browser
In this study, we report for the first time a novel type of sorbent that can be used for mercury adsorption from the air-based off-gasses-vermiculite impregnated with alkali polysulfides and thiosulfates. In contrast to other sorbents, vermiculite exhibits superior thermal stability in air and low adsorption capacity for organic vapors. This allows for a more favorable design of the soil remediation unit-direct coupling of thermal desorber with catalytic oxidizer using air as a carrier gas. In the bench-scale test at 180 °C, the sulfur/vermiculite sorbent exhibited significantly higher efficiency for the adsorption of mercury vapor from the off-gasses than the commercial sulfur/activated carbon sorbent at its highest operating temperature (120 °C). The average mercury concentration in the adsorber off-gas decreased from 1.634 mg/m3 for the sulfur/activated carbon to 0.008 mg/m3 achieved with impregnated vermiculite. The total concentration of organic compounds in the soil after thermal desorption was below the detection limit of the employed analytical method.
See more in PubMed
Balasundaram K, Sharma M (2018) Concurrent removal of elemental mercury and SO DOI
Belozovski AB, Balandinal EA (1978) Removing mercury from industrial gases-by sorption on activated carbon impregnated with ferric chloride for high capacity and safety. US Patent No. 625752
Bertinchamps F, Attianese A, Mestdagh MM, Gaigneaux EM (2006) Catalysts for chlorinated VOCs abatement: multiple effects of water on the activity of VO DOI
Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118 DOI
Ghorishi B, Gullett BK (1998) Sorption of mercury species by activated carbons and calcium-based sorbents: effect of temperature, mercury concentration and acid gases. Waste Manag Res 16:582–593. https://doi.org/10.1177/0734242X9801600609 DOI
Hou D, Gu Q, Ma F, O'Connell S (2016) Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. J Clean Prod 139:949–956. https://doi.org/10.1016/j.jclepro.2016.08.108 DOI
Hsi HC, Rood MJ, Asce M, Rostam-Abadi M, Chen S, Chang R (2002) Mercury adsorption properties of sulfur-impregnated adsorbents. J Environ Eng 128:1080–1089. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1080) DOI
Ie IR, Hung CH, Jen YS, Yuan CS, Chen WH (2013) Adsorption of vapor-phase elemental mercury (Hg DOI
Karatza D, Lancia A, Musmarra D, Zucchini C (2000) Study of mercury absorption and desorption on sulfur impregnated carbon. Exp Therm Fluid Sci 21:150–155. https://doi.org/10.1016/S0894-1777(99)00065-5 DOI
Kaštánek F, Topka P, Soukup K, Maléterová Y, Demnerová K, Kaštánek P, Šolcová O (2016) Remediation of contaminated soils by thermal desorption; effect of benzoyl peroxide addition. J Clean Prod 125:309–313. https://doi.org/10.1016/j.jclepro.2016.03.134 DOI
Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122. https://doi.org/10.1016/j.jenvman.2004.02.003 DOI
Korpiel JA, Vidic RD (1997) Effect of sulphur impregnation method on activated carbon uptake of gas-phase mercury. Environ Sci Technol 31:2319–2325. https://doi.org/10.1021/es9609260 DOI
Lee SH, Park YO (2003) Gas-phase mercury removal by carbon-based sorbents. Fuel Process Technol 84:197–206. https://doi.org/10.1016/S0378-3820(03)00055-9 DOI
Li C, Tang H, Duan Y, Zhu C, Zheng Y, Huang T (2018) Synthetic calcium-based adsorbents for gaseous mercury(II) adsorption from flue gas and study on their mercury adsorption mechanism. Fuel 234:384–391. https://doi.org/10.1016/j.fuel.2018.06.135 DOI
Liu W, Vidic RD, Brown TD (2000) Optimization of high temperature sulphur impregnation on activated carbon for permanent separation of elementary mercury vapours. Environ Sci Technol 34:483–488. https://doi.org/10.1021/es9813008 DOI
Mokhatab S, Poe WA (2012) Handbook of natural gas transmission and processing. Gulf Professional Publishing, Waltham. https://doi.org/10.1016/C2013-0-15625-5 DOI
Nippon Soda Co. Ltd (1974) Activated carbon contg. halides for mercury extn.-from air or gases, with excellent adsorptivity. JP Patent No. 49053590
Ossai IC, Ahmed A, Hassan A, Fauziah SH (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526. https://doi.org/10.1016/j.eti.2019.100526 DOI
Prasad R, Kennedy LA, Ruckenstein E (1984) Catalytic combustion. Catal Rev 26:1–58. https://doi.org/10.1080/01614948408078059 DOI
Sano A, Takaoka M, Shiota K (2017) Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chem Eng J 315:598–607. https://doi.org/10.1016/j.cej.2017.01.035 DOI
Šolcová O, Matějová L, Topka P, Musilová Z, Schneider P (2011) Comparison of textural information from argon (87 K) and nitrogen (77 K) physisorption. J Porous Mater 18:557–565. https://doi.org/10.1007/s10934-010-9409-x DOI
Šolcová O, Topka P, Soukup K, Jirátová K, Váňová H, Kaštánek F (2014) Solid waste decontamination by thermal desorption and catalytic oxidation methods. Chem Pap 68:1279–1282. https://doi.org/10.2478/s11696-013-0455-0 DOI
Soukup K, Petráš D, Topka P, Slobodian P, Šolcová O (2012) Preparation and characterization of electrospun poly(p-phenylene oxide) membranes. Catal Today 193:165–171. https://doi.org/10.1016/j.cattod.2012.03.019 DOI
Soukup K, Topka P, Hejtmánek V, Petráš D, Valeš V, Šolcová O (2014) Noble metal catalysts supported on nanofibrous polymeric membranes for environmental applications. Catal Today 236:3–11. https://doi.org/10.1016/j.cattod.2014.03.040 DOI
Sumitomo Chemical Co. (1974) Carbon absorbent for removing mercury vapor from air-carrying at least one chloride of alkali or transition metal. JP Patent No. 49066592
Svoboda K, Hartman M, Šyc M, Pohořelý M, Kameníková P, Jeremiáš M, Durda T (2016) Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units. J Environ Manag 166:499–511. https://doi.org/10.1016/j.jenvman.2015.11.001 DOI
Thornton G, Franz M, Edwards D, Pahlen G, Nathanail P (2007) The challenge of sustainability: incentives for brownfield regeneration in Europe. Environ Sci Policy 10:116–134. https://doi.org/10.1016/j.envsci.2006.08.008 DOI
Tomatis M, Moreira MT, Xu H, Deng W, He J, Parvez AM (2019) Removal of VOCs from waste gases using various thermal oxidizers: a comparative study based on life cycle assessment and cost analysis in China. J Clean Prod 233:808–818. https://doi.org/10.1016/j.jclepro.2019.06.131 DOI
Tomlin CDS (ed.) (1997) The pesticide manual-world compendium, 11th, British Crop Protection Council, Surrey, England. ISBN 1901396118
Topka P, Klementová M (2016) Total oxidation of ethanol over Au/Ce DOI
Topka P, Kaluža L, Gaálová J (2016) Total oxidation of ethanol and toluene over ceria-zirconia supported platinum catalysts. Chem Pap 70:898–906. https://doi.org/10.1515/chempap-2016-0028 DOI
Topka P, Hejtmánek V, Cruz GJF, Šolcová O, Soukup K (2019) Activated carbon from renewable material as an efficient support for palladium oxidation catalysts. Chem Eng Technol 42:851–858. https://doi.org/10.1002/ceat.201800611 DOI
Topka P, Dvořáková M, Kšírová P, Perekrestov R, Čada M, Balabánová J, Kostejn M, Jirátová K, Kovanda F (2020) Structured cobalt oxide catalysts for VOC abatement: the effect of preparation method. Environ Sci Pollut Res 27:7608–7617. https://doi.org/10.1007/s11356-019-06974-2 DOI
Vidonish JE, Zygourakis K, Masiello CA, Sabadell G, Alvarez PJJ (2016) Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2:426–437. https://doi.org/10.1016/J.ENG.2016.04.005 DOI
Xie Y, Li C, Zhao L, Zhang J, Zeng G, Zhang X, Zhang W, Tao S (2015) Experimental study on Hg DOI
Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53. https://doi.org/10.1016/j.envint.2014.09.007 DOI
Yan R, Liang DT, Tsen L, Wong YP, Lee YK (2004) Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel 83:2401–2409. https://doi.org/10.1016/j.fuel.2004.06.031 DOI
Zhao C, Dong Y, Feng Y, Li Y, Dong Y (2019) Thermal desorption for remediation of contaminated soil: a review. Chemosphere 221:841–855. https://doi.org/10.1016/j.chemosphere.2019.01.079 DOI
Zheng Y, Jensen AD, Windelin C, Jensen F (2012) Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas. Fuel 93:649–657. https://doi.org/10.1016/j.fuel.2011.09.053 DOI