Children's Single-Leg Landing Movement Capability Analysis According to the Type of Sport Practiced
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32899167
PubMed Central
PMC7503518
DOI
10.3390/ijerph17176414
PII: ijerph17176414
Knihovny.cz E-zdroje
- Klíčová slova
- childhood, drop jump landing, motor control, motor development, statistical parametric mapping,
- MeSH
- bérec * MeSH
- biomechanika MeSH
- dítě MeSH
- kolenní kloub MeSH
- lidé MeSH
- motorické dovednosti MeSH
- pohyb * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
(1) Background: Understanding children's motor patterns in landing is important not only for sport performance but also to prevent lower limb injury. The purpose of this study was to analyze children's lower limb joint angles and impact force during single-leg landings (SLL) in different types of jumping sports using statistical parametric mapping (SPM). (2) Methods: Thirty children (53.33% girls, M = 10.16 years-old, standard deviation (SD) = 1.52) divided into three groups (gymnastics, volleyball and control) participated in the study. The participants were asked to do SLLs with the dominant lower limb (barefoot) on a force plate from a height of 25 cm. The vertical ground reaction force (GRF) and lower limb joint angles were assessed. SPM{F} one-way analysis of variance (ANOVA) and SPM{t} unpaired t-tests were performed during the landing and stability phases. (3) Results: A significant main effect was found in the landing phase of jumping sport practice in GRF and joint angles. During the stability phase, this effect was exhibited in ankle and knee joint angles. (4) Conclusions: Evidence was obtained of the influence of practicing a specific sport in childhood. Child volleyball players performed SLL with lower impact force and higher knee flexion than child gymnasts. Training in specific jumping sports (i.e., volleyball and gymnastics) could affect the individual capacity to adapt SLL execution.
Zobrazit více v PubMed
Strong W.B., Malina R.M., Blimkie C.J.R., Daniels S.R., Dishman R.K., Gutin B., Hergenroeder A.C., Must A., Nixon P.A., Pivarnik J.M., et al. Evidence Based Physical Activity for School-age Youth. J. Pediatr. 2005;146:732–737. doi: 10.1016/j.jpeds.2005.01.055. PubMed DOI
Utesch T., Dreiskämper D., Strauss B., Naul R. The development of the physical fitness construct across childhood. Scand. J. Med. Sci. Sports. 2018;28:212–219. doi: 10.1111/sms.12889. PubMed DOI
Bürgi F., Meyer U., Granacher U., Schindler C., Marques-Vidal P., Kriemler S., Puder J.J. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: A cross-sectional and longitudinal study (Ballabeina) Int. J. Obes. 2011;35:937–944. doi: 10.1038/ijo.2011.54. PubMed DOI
Hulteen R.M., Morgan P.J., Barnett L.M., Stodden D.F., Lubans D.R. Development of Foundational Movement Skills: A Conceptual Model for Physical Activity Across the Lifespan. Sports Med. 2018;48:1533–1540. doi: 10.1007/s40279-018-0892-6. PubMed DOI
Keiner M., Sander A., Wirth K., Schmidtbleicher D. Is There a Difference Between Active and Less Active Children and Adolescents in Jump Performance? J. Strength Cond. Res. 2013;27:1591–1596. doi: 10.1519/JSC.0b013e318270fc99. PubMed DOI
Lazaridis S., Bassa E., Patikas D., Giakas G., Gollhofer A., Kotzamanidis C. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur. J. Appl. Physiol. 2010;110:67–74. doi: 10.1007/s00421-010-1452-4. PubMed DOI
DiCesare C.A., Montalvo A., Foss K.D.B., Thomas S.M., Hewett T.E., Jayanthi N.A., Myer G.D. Sport Specialization and Coordination Differences in Multisport Adolescent Female Basketball, Soccer, and Volleyball Athletes. J. Athl. Train. 2019;54:1105–1114. doi: 10.4085/1062-6050-407-18. PubMed DOI PMC
Briem K., Jónsdóttir K.V., Árnason Á., Sveinsson Þ. Effects of Sex and Fatigue on Biomechanical Measures During the Drop-Jump Task in Children. Orthop. J. Sports Med. 2017;5 doi: 10.1177/2325967116679640. PubMed DOI PMC
Fransz D.P., Huurnink A., Kingma I., Verhagen E.A.L.M., van Dieën J.H. A systematic review and meta-analysis of dynamic tests and related force plate parameters used to evaluate neuromusculoskeletal function in foot and ankle pathology. Clin. Biomech. 2013;28:591–601. doi: 10.1016/j.clinbiomech.2013.06.002. PubMed DOI
Liederbach M., Dilgen F.E., Rose D.J. Incidence of Anterior Cruciate Ligament Injuries among Elite Ballet and Modern Dancers: A 5-Year Prospective Study. Am. J. Sports Med. 2008;36:1779–1788. doi: 10.1177/0363546508323644. PubMed DOI
Dickin D.C., Johann E., Wang H., Popp J.K. Combined Effects of Drop Height and Fatigue on Landing Mechanics in Active Females. J. Appl. Biomech. 2015;31:237–243. doi: 10.1123/jab.2014-0190. PubMed DOI
Raffalt P.C., Alkjær T., Simonsen E.B. Intra- and inter-subject variation in lower limb coordination during countermovement jumps in children and adults. Hum. Mov. Sci. 2016;46:63–77. doi: 10.1016/j.humov.2015.12.004. PubMed DOI
McNitt-Gray J.L. Kinematics and Impulse Characteristics of Drop Landings from Three Heights. J. Appl. Biomech. 1991;7:201–224. doi: 10.1123/ijsb.7.2.201. DOI
Seegmiller J.G., McCaw S.T. Ground Reaction Forces Among Gymnasts and Recreational Athletes in Drop Landings. J. Athl. Train. 2003;38:311–314. PubMed PMC
Mills C., Pain M.T.G., Yeadon M.R. Reducing ground reaction forces in gymnastics’ landings may increase internal loading. J. Biomech. 2009;42:671–678. doi: 10.1016/j.jbiomech.2009.01.019. PubMed DOI
Slater A., Campbell A., Smith A., Straker L. Greater lower limb flexion in gymnastic landings is associated with reduced landing force: A repeated measures study. Sports Biomech. 2015;14:45–56. doi: 10.1080/14763141.2015.1029514. PubMed DOI
Christoforidou A., Patikas D.A., Bassa E., Paraschos I., Lazaridis S., Christoforidis C., Kotzamanidis C. Landing from different heights: Biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls. J. Electromyogr. Kinesiol. 2017;32:1–8. doi: 10.1016/j.jelekin.2016.11.003. PubMed DOI
Yu B., Lin C.-F., Garrett W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006;21:297–305. doi: 10.1016/j.clinbiomech.2005.11.003. PubMed DOI
Azevedo A.M., Oliveira R., Vaz J.R., Cortes N. Oxford foot model kinematics in landings: A comparison between professional dancers and non-dancers. J. Sci. Med. Sport. 2020;23:347–352. doi: 10.1016/j.jsams.2019.10.018. PubMed DOI
Viitasalo J.T., Salo A., Lahtinen J. Neuromuscular functioning of athletes and non-athletes in the drop jump. Eur. J. Appl. Physiol. 1998;78:432–440. doi: 10.1007/s004210050442. PubMed DOI
Yu B., Herman D., Preston J., Lu W., Kirkendall D.T., Garrett W.E. Immediate Effects of a Knee Brace with a Constraint to Knee Extension on Knee Kinematics and Ground Reaction Forces in a Stop-Jump Task. Am. J. Sports Med. 2004;32:1136–1143. doi: 10.1177/0363546503262204. PubMed DOI
Russell P.J., Croce R.V., Swartz E.E., Decoster L.C. Knee-muscle activation during landings: Developmental and gender comparisons. Med. Sci. Sports Exerc. 2007;39:159–170. doi: 10.1249/01.mss.0000241646.05596.8a. PubMed DOI
Harrison A.J., Ryan W., Hayes K. Functional data analysis of joint coordination in the development of vertical jump performance. Sports Biomech. 2007;6:199–214. doi: 10.1080/14763140701323042. PubMed DOI
Hutchinson A.B., Yao P., Hutchinson M.R. Single-leg balance and core motor control in children: When does the risk for ACL injury occurs? BMJ Open Sport Exerc. Med. 2016;2:e000135. doi: 10.1136/bmjsem-2016-000135. PubMed DOI PMC
García-Massó X., Skypala J., Jandacka D., Estevan I. Reliability of a new analysis to compute time to stabilization following a single leg drop jump landing in children. PLoS ONE. 2019;14:e0212124. doi: 10.1371/journal.pone.0212124. PubMed DOI PMC
Fransz D.P., Huurnink A., de Boode V.A., Kingma I., van Dieën J.H. Time to stabilization in single leg drop jump landings: An examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values. Gait Posture. 2015;41:63–69. doi: 10.1016/j.gaitpost.2014.08.018. PubMed DOI
Penny W.D., Friston K.J., Ashburner J.T., Kiebel S.J., Nichols T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier; Boston, MA, USA: 2011.
Dale A.M., Liu A.K., Fischl B.R., Buckner R.L., Belliveau J.W., Lewine J.D., Halgren E. Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity. Neuron. 2000;26:55–67. doi: 10.1016/S0896-6273(00)81138-1. PubMed DOI
Pataky T.C., Robinson M.A., Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013;46:2394–2401. doi: 10.1016/j.jbiomech.2013.07.031. PubMed DOI
Simon-Martinez C., Jaspers E., Mailleux L., Desloovere K., Vanrenterghem J., Ortibus E., Molenaers G., Feys H., Klingels K. Negative Influence of Motor Impairments on Upper Limb Movement Patterns in Children with Unilateral Cerebral Palsy. A Statistical Parametric Mapping Study. Front. Hum. Neurosci. 2017;11:482. doi: 10.3389/fnhum.2017.00482. PubMed DOI PMC
Hughes G., Watkins J. Lower Limb Coordination and Stiffness During Landing from Volleyball Block Jumps. Res. Sports Med. 2008;16:138–154. doi: 10.1080/15438620802103999. PubMed DOI
Pollard C.D., Sigward S.M., Powers C.M. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin. Biomech. 2010;25:142–146. doi: 10.1016/j.clinbiomech.2009.10.005. PubMed DOI PMC
Noyes F.R., Barber-Westin S.D., Fleckenstein C., Walsh C., West J. The Drop-Jump Screening Test: Difference in Lower Limb Control by Gender and Effect of Neuromuscular Training in Female Athletes. Am. J. Sports Med. 2005;33:197–207. doi: 10.1177/0363546504266484. PubMed DOI
Herrington L. Knee Valgus Angle During Landing Tasks in Female Volleyball and Basketball Players. J. Strength Cond. Res. 2011;25:262–266. doi: 10.1519/JSC.0b013e3181b62c77. PubMed DOI
Barber-Westin S.D., Smith S.T., Campbell T., Noyes F.R. The Drop-Jump Video Screening Test: Retention of Improvement in Neuromuscular Control in Female Volleyball Players. J. Strength Cond. Res. 2010;24:3055–3062. doi: 10.1519/JSC.0b013e3181d83516. PubMed DOI
McNitt-Gray J.L. Kinetics of the lower extremities during drop landings from three heights. J. Biomech. 1993;26:1037–1046. doi: 10.1016/S0021-9290(05)80003-X. PubMed DOI
Pataky T. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012;15:295–301. doi: 10.1080/10255842.2010.527837. PubMed DOI
Pataky T.C., Vanrenterghem J., Robinson M.A. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories. J. Biomech. 2016;49:1468–1476. doi: 10.1016/j.jbiomech.2016.03.032. PubMed DOI
Peng H.-T., Song C.-Y., Wallace B.J., Kernozek T.W., Wang M.-H., Wang Y.-H. Effects of Relative Drop Heights of Drop Jump Biomechanics in Male Volleyball Players. Int. J. Sports Med. 2019;40:863–870. doi: 10.1055/a-0969-8623. PubMed DOI
Kabaciński J., Dworak L.B., Murawa M., Rzepnicka A. Dynamic load indicators for take-off–landing sequence in blocks and attacks of elite female volleyball players. Acta Bioeng. Biomech. 2016:41–46. doi: 10.5277/ABB-00250-2014-05. PubMed DOI
Ohji S., Aizawa J., Hirohata K., Ohmi T., Yagishita K. Correlations between Vertical Ground Reaction Force, Sagittal Joint Angles, and the Muscle Co-Contraction Index during Single-Leg Jump-Landing. [(accessed on 26 August 2020)]; Available online: https://sites.kowsarpub.com/asjsm/articles/81771.html.
Devita P., Skelly W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992;24:108–115. doi: 10.1249/00005768-199201000-00018. PubMed DOI
Zahradnik D., Jandacka D., Uchytil J., Farana R., Hamill J. Lower extremity mechanics during landing after a volleyball block as a risk factor for anterior cruciate ligament injury. Phys. Ther. Sport. 2015;16:53–58. doi: 10.1016/j.ptsp.2014.04.003. PubMed DOI
Gittoes M.J., Irwin G. Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings. BMC Sports Sci. Med. Rehabil. 2012;4:4. doi: 10.1186/1758-2555-4-4. PubMed DOI PMC
Favre J., Clancy C., Dowling A.V., Andriacchi T.P. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors during Jump Landing. Am. J. Sports Med. 2016;44:1540–1546. doi: 10.1177/0363546516634000. PubMed DOI
Powers C.M. The Influence of Abnormal Hip Mechanics on Knee Injury: A Biomechanical Perspective. J. Orthop. Sports Phys. Ther. 2010;40:42–51. doi: 10.2519/jospt.2010.3337. PubMed DOI
Ng J.L., Button C. Reconsidering the fundamental movement skills construct: Implications for assessment. Mov. Sport Sci. 2018;102:19–29. doi: 10.1051/sm/2018025. DOI
Brien W.O., Belton S., Issartel J. Fundamental movement skill proficiency amongst adolescent youth. Phys. Educ. Sport Pedagog. 2016;21:557–571. doi: 10.1080/17408989.2015.1017451. DOI
Fédération Internationale de Gymnastique (FIG) 2017–2020 Code of Points Women’s Artistic Gymnastics. FIG; Lausanne, Switzerland: 2016.
Dufek J., Bates B. The evaluation and prediction of impact forces during landings. Med. Sci. Sports Exerc. 1990;22:370–377. doi: 10.1249/00005768-199006000-00014. PubMed DOI
Onate J.A., Guskiewicz K.M., Sullivan R.J. Augmented Feedback Reduces Jump Landing Forces. J. Orthop. Sports Phys. Ther. 2001;31:511–517. doi: 10.2519/jospt.2001.31.9.511. PubMed DOI
Marinšek M. Basic landing characteristics and their application in artistics gymnastics. Sci. Gymnast. J. 2010;2:59–67.
Bakker R., Tomescu S., Brenneman E., Hangalur G., Laing A., Chandrashekar N. Effect of sagittal plane mechanics on ACL strain during jump landing. J. Orthop. Res. 2016;34:1636–1644. doi: 10.1002/jor.23164. PubMed DOI
Newell K.M. Motor skill acquisition. Annu. Rev. Psychol. 1991;42:213–237. doi: 10.1146/annurev.ps.42.020191.001241. PubMed DOI
Renshaw I., Chow J.-Y. A constraint-led approach to sport and physical education pedagogy. Phys. Educ. Sport Pedagog. 2019;24:103–116. doi: 10.1080/17408989.2018.1552676. DOI
Lobietti R., Coleman S., Pizzichillo E., Merni F. Landing techniques in volleyball. J. Sports Sci. 2010;28:1469–1476. doi: 10.1080/02640414.2010.514278. PubMed DOI
Tillman M.D., Hass C.J., Brunt D., Bennett G.R. Jumping and Landing Techniques in Elite Women’s Volleyball. J. Sports Sci. Med. 2004;3:30–36. PubMed PMC
Yeow C.H., Lee P.V.S., Goh J.C.H. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum. Mov. Sci. 2011;30:624–635. doi: 10.1016/j.humov.2010.11.010. PubMed DOI
Laughlin W.A., Weinhandl J.T., Kernozek T.W., Cobb S.C., Keenan K.G., O’Connor K.M. The effects of single-leg landing technique on ACL loading. J. Biomech. 2011;44:1845–1851. doi: 10.1016/j.jbiomech.2011.04.010. PubMed DOI
Nagano Y., Ida H., Akai M., Fukubayashi T. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee. 2009;16:153–158. doi: 10.1016/j.knee.2008.10.012. PubMed DOI
Wang L.-I. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks. J. Sports Sci. Med. 2011;10:151–156. PubMed PMC
Loës M., Dahlstedt L.J., Thomée R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports. 2000;10:90–97. doi: 10.1034/j.1600-0838.2000.010002090.x. PubMed DOI
Chappell J.D., Yu B., Kirkendall D.T., Garrett W.E. A Comparison of Knee Kinetics between Male and Female Recreational Athletes in Stop-Jump Tasks. Am. J. Sports Med. 2002;30:261–267. doi: 10.1177/03635465020300021901. PubMed DOI
Hughes G., Watkins J., Owen N. Differences between the sexes in knee kinetics during landing from volleyball block jumps. Eur. J. Sport Sci. 2010;10:1–11. doi: 10.1080/17461390903108117. DOI
Decker M.J., Torry M.R., Wyland D.J., Sterett W.I., Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003;18:662–669. doi: 10.1016/S0268-0033(03)00090-1. PubMed DOI
Bradshaw E.J. Performance and Health Concepts in Artistic Gymnastics. [(accessed on 1 June 2020)]; Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/4378.
Čuk I., Marinšek M. Landing quality in artistic gymnastics is related to landing symmetry. Biol. Sport. 2013;30:29–33. doi: 10.5604/20831862.1029818. PubMed DOI PMC
Kovacs I., Tihanyi J., Devita P., Racz L., Barrier J., Hortobagyl T. Foot placement modifies kinematics and kinetics during drop jumping. Med. Sci. Sports Exerc. 1999;31:708–716. doi: 10.1097/00005768-199905000-00014. PubMed DOI