Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32901040
PubMed Central
PMC7479619
DOI
10.1038/s41467-020-18329-4
PII: 10.1038/s41467-020-18329-4
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- Digitaria klasifikace genetika MeSH
- domestikace MeSH
- druhová specificita MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- jedlá semena klasifikace genetika MeSH
- klimatické změny MeSH
- molekulární evoluce MeSH
- selekce (genetika) MeSH
- zemědělství metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
AGAP Université de Montpellier Cirad INRAE Institut Agro Montpellier France
CIRAD UMR AGAP Montpellier France
CNRGV Plant Genomics Center INRAE Toulouse France
Department of Plant and Microbial Biology University of Zurich Zürich Switzerland
DIADE Univ Montpellier IRD Montpellier France
Inari Agriculture One Kendall Square Building 600 700 Cambridge MA 02139 USA
Laboratoire de Botanique Département de Botanique et Géologie IFAN Ch A Diop UCAD Dakar Senegal
Laboratoire Mixte International LAPSE Dakar Senegal
Naturalis Biodiversity Center Leiden the Netherlands
Senegalese Agricultural Research Institute Dakar Senegal
Supercomputing Core Lab King Abdullah University of Science and Technology Thuwal Saudi Arabia
Zobrazit více v PubMed
Hickey LT, et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019;37:744–754. PubMed
Tena G. Sequencing forgotten crops. Nat. Plants. 2019;5:5. PubMed
National Academies of Sciences Engineering and Medicine. Breakthroughs to Advance Food and Agricultural Research by 2030 (The National Academies Press, Washington, 2019).
FAO. The State of Agricultural Commodity Markets 2018. Agricultural Trade, Climate Change and Food Security (FAO, Rome, 2018).
Dalin C, Wada Y, Kastner T, Puma MJ. Groundwater depletion embedded in international food trade. Nature. 2017;543:700–704. PubMed PMC
Fernie AR, Yan J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant. 2019;12:615–631. PubMed
Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063–1066. PubMed
Gruber K. Agrobiodiversity: the living library. Nature. 2017;544:S8–S10. PubMed
Kistler L, et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science. 2018;362:1309–1313. PubMed
Wing RA, Purugganan MD, Zhang QF. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 2018;19:505–517. PubMed
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science. 2019;366:eaax0025. PubMed
Kantar MB, Runck B. Take a walk on the wild side. Nat. Clim. Change. 2019;9:731–732.
Dawson IK, et al. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytol. 2019;224:37–54. PubMed
Pironon S, et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change. 2019;9:758–763.
Wallace JG, Rodgers-Melnick E, Buckler ES. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 2018;52:421–444. PubMed
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667–697. PubMed
Barnaud A, et al. High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs. Genet. Resour. Crop Evol. 2017;64:1485–1490.
Ayenan MAT, Sodedji KAF, Nwankwo CI, Olodo KF, Alladassi MEB. Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genet. Resour. Crop Evol. 2018;65:373–386.
Cruz, J. F. & Beavogui, F. Fonio, an African Cereal (CIRAD, France, 2016).
Adoukonou-Sagbadja H, Wagner C, Ordon F, Friedt W. Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop. Plant Biol. 2010;3:240–251.
Abdul, S. D. & Jideani, A. I. O. Fonio (Digitaria spp.) breeding. In Advances in Plant Breeding Strategies: Cereals (eds Al-Khayri, J. M., Jain, S. M. & Johnson, D. V.) 47–81 (Springer, 2019).
Adoukonou-Sagbadja H, et al. Flow cytometric analysis reveals different nuclear DNA contents in cultivated Fonio (Digitaria spp.) and some wild relatives from West-Africa. Plant Syst. Evol. 2007;267:163–176.
Avni R, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. PubMed
Edger PP, et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 2019;51:541–547. PubMed PMC
Springer NM, et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 2018;50:1282–1288. PubMed
Han YH, Zhang T, Thammapichai P, Weng YQ, Jiang JM. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–779. PubMed PMC
Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. PubMed PMC
Bennetzen JL, et al. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 2012;30:555–561. PubMed
Tang H. Disentangling a polyploid genome. Nat. Plants. 2017;3:688–689. PubMed
Suguiyama VF, Vasconcelos LAB, Rossi MM, Biondo C, de Setta N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS ONE. 2019;14:e0214542. PubMed PMC
International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science. 2018;361:eaar7191. PubMed
Ramirez-Gonzalez RH, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361:eaar6089. PubMed
Bird KA, VanBuren R, Puzey JR, Edger PP. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 2018;220:87–93. PubMed
Schnable JC, Springer NM, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA. 2011;108:4069–4074. PubMed PMC
Shi JP, et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat. Commun. 2019;10:464. PubMed PMC
Clément, J. & Leblanc, J. M. Collecte IBPGR-ORSTOM de 1977 au Togo (Catalogue ORSTOM, 1984).
Ramu P, et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat. Genet. 2017;49:959–963. PubMed
Patwari P, et al. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 2019;98:727–744. PubMed
Pavlidis P, Zivkovic D, Stamatakis A, Alachiotis N. SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 2013;30:2224–2234. PubMed PMC
Li Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 2011;43:1266–1269. PubMed
Lin ZW, et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 2012;44:720–724. PubMed PMC
Wang MH, et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 2014;46:982–988. PubMed PMC
VanBuren R, et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 2020;11:884. PubMed PMC
Cubry P, et al. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr. Biol. 2018;28:2274–2282. PubMed
Liang Z, et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 2019;10:1190. PubMed PMC
Blench RM. Vernacular names for African millets and other minor cereals and their significance for agricultural history. Archaeol. Anthropol. Sci. 2016;8:1–8.
Adoukonou-Sagbadja H, Dansi A, Vodouhe R, Akpagana K. Collecting fonio (Digitaria exilis Kipp. Stapf, D. iburua Stapf) landraces in Togo. Plant Genet. Resour. Newsl. 2004;139:63–67.
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 2013;14:840–852. PubMed
Barnaud A, et al. Development of nuclear microsatellite markers for the fonio, Digitaria exilis (Poaceae), an understudied West African cereal. Am. J. Bot. 2012;99:E105–E107. PubMed
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. PubMed
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51A:127–128. PubMed
Jackman SD, et al. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinforma. 2018;19:393. PubMed PMC
Coombe L, et al. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinforma. 2018;19:234. PubMed PMC
Warren RL, et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience. 2015;4:35. PubMed PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. PubMed PMC
Dudchenko O, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. PubMed PMC
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. PubMed
Untergasser A, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. PubMed PMC
Šimoníková D, et al. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa Spp.) Front. Plant Sci. 2019;10:1503. PubMed PMC
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 2008;9:18. PubMed PMC
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–W268. PubMed PMC
Ou SJ, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410–1422. PubMed PMC
James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 2018;46:e83. PubMed PMC
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–GC10. PubMed
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC
Knaus BJ, Grunwald NJ. VCFR: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 2017;17:44–53. PubMed
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. PubMed
Wickham, H. ggplot2 - Elegant Graphics for Data Analysis (Springer International Publishing, 2016).
Ma JX, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA. 2004;101:12404–12410. PubMed PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. PubMed
Cantarel BL, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. PubMed PMC
Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. PubMed PMC
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. PubMed
Paterson AH, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556. PubMed
Schnable PS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–1115. PubMed
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800. PubMed
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 2005;6:31. PubMed PMC
Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr. Protoc. Bioinforma. 2011;35:4.6.1–4.6.10. PubMed PMC
Korf I. Gene finding in novel genomes. BMC Bioinforma. 2004;5:59. PubMed PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215–ii225. PubMed
Lovell JT, et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 2018;9:5213. PubMed PMC
The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–768. PubMed
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed
Luo MC, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502. PubMed PMC
Wang YP, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. PubMed PMC
Thompson JD, Higgins DG, Gibson TJ. Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Yang ZH. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. PubMed
Gaut BS, Morton BR, McCaig BC, Clegg MT. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA. 1996;93:10274–10279. PubMed PMC
Hu F, Lin Y, Tang J. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinforma. 2014;15:354. PubMed PMC
Ren L, Huang W, Cannon SB. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species. New Phytol. 2019;223:2090–2103. PubMed
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 2013;43:11 10 1-11 10 33. PubMed PMC
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC
Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly. 2012;6:80–92. PubMed PMC
Frichot E, Francois O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 2015;6:925–929.
Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: Tools for Spatial Data. Retrieved from https://cran.r-project.org/package=fields (2017).
Cubry P, Vigouroux Y, Francois O. The empirical distribution of singletons for geographic samples of DNA sequences. Front. Genet. 2017;8:139. PubMed PMC
Zhang C, Dong SS, Xu JY, He WM, Yang TL. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics. 2019;35:1786–1788. PubMed
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.
Cubry, P. et al. Genome wide association study pinpoints key agronomic QTLs in African rice Oryza glaberrima. Preprint at 10.1101/2020.01.07.897298 (2020). PubMed PMC
Kang HM, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–1723. PubMed PMC
Lipka AE, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–2399. PubMed
Caye K, Jumentier B, Lepeule J, Francois O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 2019;36:852–860. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. (Methdol.) 1995;57:289–300.
Purcell S, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Turner SD. qqman: an R package for visualizing GWAS results usingQ-Q and Manhattan plots. J. Open Source Softw. 2018;3:731.
Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics. 2020;36:422–429. PubMed PMC
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. PubMed
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–496. PubMed PMC
Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 2014;46:919–925. PubMed PMC
Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history froth hundreds of unphased whole genomes. Nat. Genet. 2017;49:303–309. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Julkowska MM, et al. MVApp-Multivariate analysis application for streamlined data analysis and curation. Plant Physiol. 2019;180:1261–1276. PubMed PMC
Dryad
10.5061/dryad.2v6wwpzj0