Research progress on flat epithelium of the inner ear

. 2020 Nov 16 ; 69 (5) : 775-785. [epub] 20200909

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32901490

Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.

Zobrazit více v PubMed

BOMMAKANTI K, IYER JS, STANKOVIC KM. Cochlear histopathology in human genetic hearing loss: state of the science and future prospects. Hear Res. 2019;382:107785. doi: 10.1016/j.heares.2019.107785. PubMed DOI PMC

BUDENZ CL, WONG HT, SWIDERSKI DL, SHIBATA SB, PFINGST BE, RAPHAEL Y. Differential effects of AAV.BDNF and AAV.Ntf3 in the deafened adult guinea pig ear. Sci Rep. 2015;5:8619. doi: 10.1038/srep08619. PubMed DOI PMC

CHEN Z, SHAO Y, LI X. The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR. Mol Vis. 2015;21:706–710. PubMed PMC

COCO A, EPP S, FALLON J, XU J, MILLARD R, SHEPHERD R. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hear Res. 2007;225:60–70. doi: 10.1016/j.heares.2006.12.004. PubMed DOI PMC

COTANCHE D, MESSANA E, OFSIE M. Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hear Res. 1995;91:148–159. doi: 10.1016/0378-5955(95)00185-9. PubMed DOI

CRUCIANI S, GARRONI G, VENTURA C, DANANI A, NECAS A, MAIOLI M. Stem cells and physical energies: can we really drive stem cell fate? Physiol Res. 2019;68(Suppl 4):S375–S384. doi: 10.33549/physiolres.934388. PubMed DOI

DABDOUB A, PULIGILLA C, JONES JM, FRITZSCH B, CHEAH KS, PEVNY LH, KELLEY MW. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A. 2008;105:18396–18401. doi: 10.1073/pnas.0808175105. PubMed DOI PMC

FRITZSCH B, DILLARD M, LAVADO A, HARVEY NL, JAHAN I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One. 2010;5:e9377. doi: 10.1371/journal.pone.0009377. PubMed DOI PMC

FRITZSCH B, MATEI V, NICHOLS D, BERMINGHAM N, JONES K, BEISEL K, WANG V. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn. 2005;233:570–583. doi: 10.1002/dvdy.20370. PubMed DOI PMC

FUKUI H, RAPHAEL Y. Gene therapy for the inner ear. Hear Res. 2013;297:99–105. https://doi.org:10.1016/j.heares.2012.11.017. PubMed DOI PMC

GAO Z, KELLY MC, YU D, WU H, LIN X, CHI FL, CHEN P. Spatial and age-dependent hair cell generation in the postnatal mammalian utricle. Mol Neurobiol. 2016;53:1601–1612. doi: 10.1007/s12035-015-9119-0. PubMed DOI

GIROD D, DUCKERT L, RUBEL E. Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hear Res. 1989;42:175–194. doi: 10.1016/0378-5955(89)90143-3. PubMed DOI

GUO JY, HE L, QU TF, LIU YY, LIU K, WANG GP, GONG SS. Canalostomy as a surgical approach to local drug delivery into the inner ears of adult and neonatal mice. J Vis Exp. 2018;135:e57351. doi: 10.3791/57351. PubMed DOI PMC

HE L, GUO JY, QU TF, WEI W, LIU K, PENG Z, WANG GP, GONG SS. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res. 2020;391:107953. doi: 10.1016/j.heares.2020.107953. PubMed DOI

HICKS KL, WISNER SR, COX BC, STONE JS. Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res. 2020;385:107838. doi: 10.1016/j.heares.2019.107838. PubMed DOI PMC

HU Z, CORWIN JT. Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition. Proc Natl Acad Sci U S A. 2007;104:16675–16680. doi: 10.1073/pnas.0704576104. PubMed DOI PMC

ISAKOV N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol. 2018;48:36–52. doi: 10.1016/j.semcancer.2017.04.012. PubMed DOI

IZUMIKAWA M, BATTS S, MIYAZAWA T, SWIDERSKI D, RAPHAEL Y. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res. 2008;240:52–56. doi: 10.1016/j.heares.2008.02.007. PubMed DOI PMC

JAGGER DJ, FORGE A. Connexins and gap junctions in the inner ear – it’s not just about K+ recycling. Cell Tissue Res. 2014;360:633–644. doi: 10.1007/s00441-014-2029-z. PubMed DOI PMC

JAHAN I, PAN N, FRITZSCH B. Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context. Front Cell Neurosci. 2015;9:26. doi: 10.3389/fncel.2015.00026. PubMed DOI PMC

JAHAN I, ELLIOTT KL, FRITZSCH B. Understanding molecular evolution and development of the organ of Corti can provide clues for hearing restoration. Integr Comp Biol. 2018;58:351–365. doi: 10.1093/icb/icy019. PubMed DOI PMC

JIANG M, KARASAWA T, STEYGER PS. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci. 2017;11:308. doi: 10.3389/fncel.2017.00308. PubMed DOI PMC

JOHNEN N, FRANCART M, THELEN N, CLOES M, THIRY M. Evidence for a partial epithelial–mesenchymal transition in postnatal stages of rat auditory organ morphogenesis. Histochem Cell Biol. 2012;138:477–488. doi: 10.1007/s00418-012-0969-5. PubMed DOI

JUN A, McGUIRT W, HINOJOSA R, GREEN G, FISCHEL-GHODSIAN N, SMITH R. Temporal bone histopathology in connexin 26-related hearing loss. Laryngoscope. 2000;110:269–275. doi: 10.1097/00005537-200002010-00016. PubMed DOI

KALCHEIM C. Epithelial–mesenchymal transitions during neural crest and somite development. J Clin Med. 2015;5:E1. doi: 10.3390/jcm5010001. PubMed DOI PMC

KIM YH, RAPHAEL Y. Cell division and maintenance of epithelial integrity in the deafened auditory epithelium. Cell Cycle. 2007;6:612–619. doi: 10.4161/cc.6.5.3929. PubMed DOI

KOBAYASHI Y, NAKAMURA H, FUNAHASHI J. Epithelial-mesenchymal transition as a possible mechanism of semicircular canal morphogenesis in chick inner ear. Tohoku J Exp Med. 2008;215:207–217. doi: 10.1620/tjem.215.207. PubMed DOI

KUJAWA SG, LIBERMAN MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–14085. doi: 10.1523/jneurosci.2845-09.2009. PubMed DOI PMC

KUO BR, BALDWIN EM, LAYMAN WS, TAKETO MM, ZUO J. In vivo cochlear hair cell generation and survival by coactivation of beta-catenin and Atoh1. J Neurosci. 2015;35:10786–10798. doi: 10.1523/jneurosci.0967-15.2015. PubMed DOI PMC

KUSUNOKI T, CUREOGLU S, SCHACHERN PA, BABA K, KARIYA S, PAPARELLA MM. Age-related histopathologic changes in the human cochlea: a temporal bone study. Otolaryngol Head Neck Surg. 2004a;131:897–903. doi: 10.1016/j.otohns.2004.05.022. PubMed DOI

KUSUNOKI T, CUREOGLU S, SCHACHERN P, SAMPAIO A, FUKUSHIMA H, OKTAY M, PAPARELLA M. Effects of aminoglycoside administration on cochlear elements in human temporal bones. Auris Nasus Larynx. 2004b;31:383–388. doi: 10.1016/s0385-8146(04)00147-6. PubMed DOI

KUZNETSOVA AV, KURINOV AM, ALEKSANDROVA MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J Ophthalmol. 2014;2014:801787. doi: 10.1155/2014/801787. PubMed DOI PMC

LADRECH S, EYBALIN M, PUEL JL, LENOIR M. Epithelial-mesenchymal transition, and collective and individual cell migration regulate epithelial changes in the amikacin-damaged organ of Corti. Histochem Cell Biol. 2017;148:129–142. doi: 10.1007/s00418-017-1548-6. PubMed DOI

LEE MY, PARK YH. Potential of gene and cell therapy for inner ear hair cells. Biomed Res Int. 2018;2018:8137614. doi: 10.1155/2018/8137614. PubMed DOI PMC

LEE MY, HACKELBERG S, GREEN KL, LUNGHAMER KG, KURIOKA T, LOOMIS BR, SWIDERSKI DL, DUNCAN RK, RAPHAEL Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci Rep. 2017;7:46058. doi: 10.1038/srep46058. PubMed DOI PMC

LEONOVA EV, RAPHAEL Y. Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti. Hear Res. 1997;113:14–28. doi: 10.1016/s0378-5955(97)00130-5. PubMed DOI

LI W, YOU D, CHEN Y, CHAI R, LI H. Regeneration of hair cells in the mammalian vestibular system. Front Med. 2016;10:143–151. doi: 10.1007/s11684-016-0451-1. PubMed DOI

LIU H, LI Y, CHEN L, ZHANG Q, PAN N, NICHOLS DH, ZHANG WJ, FRITZSCH B, HE DZ. Organ of Corti and Stria Vascularis: Is there an interdependence for survival? PLoS One. 2016;11:e0168953. doi: 10.1371/journal.pone.0168953. PubMed DOI PMC

LIU Z, DEARMAN JA, COX BC, WALTERS BJ, ZHANG L, AYRAULT O, ZINDY F, GAN L, ROUSSEL MF, ZUO J. Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic expression. J Neurosci. 2012;32:6600–6610. doi: 10.1523/jneurosci.0818-12.2012. PubMed DOI PMC

LONGWORTH-MILLS E, KOEHLER KR, HASHINO E. Generating inner ear organoids from mouse embryonic stem cells. Methods Mol Biol. 2015;1341:391–406. doi: 10.1007/7651_2015_215. PubMed DOI PMC

MAKARY CA, SHIN J, KUJAWA SG, LIBERMAN MC, MERCHANT SN. Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol. 2011;12:711–717. doi: 10.1007/s10162-011-0283-2. PubMed DOI PMC

McCALL AA, ISHIYAMA GP, LOPEZ IA, BHUTA S, VETTER S, ISHIYAMA A. Histopathological and ultrastructural analysis of vestibular endorgans in Meniere's disease reveals basement membrane pathology. BMC Ear Nose Throat Disord. 2009;9:4. doi: 10.1186/1472-6815-9-4. PubMed DOI PMC

MEYERS JR, CORWIN JT. Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. J Neurosci. 2007;27:4313–4325. doi: 10.1523/jneurosci.5023-06.2007. PubMed DOI PMC

NADOL JB, EDDINGTON D. Histopathology of the inner ear relevant to cochlear implantation. Adv Otorhinolaryngol. 2006;64:31–49. doi: 10.1159/000094643. PubMed DOI

NADOL JB, HANDZEL O, AMR S. Histopathology of the human inner ear in a patient with sensorineural hearing loss caused by a variant in DFNA5. Otol Neurotol. 2015;36:1616–1621. doi: 10.1097/mao.0000000000000888. PubMed DOI

NADOL JB, YOUNG Y, GLYNN R. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1989;98:411–416. doi: 10.1177/000348948909800602. PubMed DOI

NAPLES JG, RUCKENSTEIN MJ. Cochlear implant. Otolaryngol Clin North Am. 2020;53:87–102. doi: 10.1016/j.otc.2019.09.004. PubMed DOI

NI W, LIN C, GUO L, WU J, CHEN Y, CHAI R, LI W, LI H. Extensive supporting cell proliferation and mitotic hair cell generation by in vivo genetic reprogramming in the neonatal mouse cochlea. J Neurosci. 2016;36:8734–8745. doi: 10.1523/jneurosci.0060-16.2016. PubMed DOI PMC

NIETO MA, HUANG RY, JACKSON RA, THIERY JP. EMT 2016. Cell. 2016;166:21–45. doi: 10.1016/j.cell.2016.06.028. PubMed DOI

PAN N, JAHAN I, KERSIGO J, DUNCAN JS, KOPECKY B, FRITZSCH B. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One. 2012;7:e30358. doi: 10.1371/journal.pone.0030358. PubMed DOI PMC

PAN N, JAHAN I, KERSIGO J, KOPECKY B, SANTI P, JOHNSON S, SCHMITZ H, FRITZSCH B. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res. 2011;275:66–80. doi: 10.1016/j.heares.2010.12.002. PubMed DOI PMC

PARK YH, WILSON KF, UEDA Y, TUNG WONG H, BEYER LA, SWIDERSKI DL, DOLAN DF, RAPHAEL Y. Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium. Mol Ther. 2014;22:873–880. doi: 10.1038/mt.2013.292. PubMed DOI PMC

PAULEY S, KOPECKY B, BEISEL K, SOUKUP G, FRITZSCH B. Stem cells and molecular strategies to restore hearing. Panminerva Med. 2008;50:41–53. PubMed PMC

PAWLOWSKI KS, KIKKAWA YS, WRIGHT CG, ALAGRAMAM KN. Progression of inner ear pathology in Ames Waltzer mice and the role of protocadherin 15 in hair cell development. J Assoc Res Otolaryngol. 2006;7:83–94. doi: 10.1007/s10162-005-0024-5. PubMed DOI PMC

PEREZ FA, CAVUSCENS S, RANIERI M, Van de BERG R, STOKROOS R, KINGMA H, GUYOT J-P, GUINAND N. The vestibular implant: A probe in orbit around the human balance system. J Vestib Res. 2017;27:51–61. doi: 10.3233/ves-170604. PubMed DOI

RAPHAEL Y, KIM YH, OSUMI Y, IZUMIKAWA M. Non-sensory cells in the deafened organ of Corti: approaches for repair. Int J Dev Biol. 2007;51:649–654. doi: 10.1387/ijdb.072370yr. PubMed DOI

RAPHAEL Y, FRISANCHO JC, ROESSLER BR. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett. 1996;207:137–141. doi: 10.1016/0304-3940(96)12499-x. PubMed DOI

HINOJOSA R, NELSON EG, LERNER SA, REDLEAF MI, SCHRAMM DR. Aminoglycoside ototoxicity: a human temporal bone study. Laryngoscope. 2001;111:1797–1805. doi: 10.1097/00005537-200110000-00025. PubMed DOI

REH T, MAASS J, GU R, CAI T, WAN Y, CANTELLANO S, ASPRER J, ZHANG H, JEN H, EDLUND R, LIU Z, GROVES A. Transcriptomic analysis of mouse cochlear supporting cell maturation reveals large-scale changes in Notch responsiveness prior to the onset of hearing. PLoS One. 2016;11:e0167286. doi: 10.1371/journal.pone.0167286. PubMed DOI PMC

RICHARDSON R, ATKINSON P. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther. 2015;15:417–430. doi: 10.1517/14712598.2015.1009889. PubMed DOI

ROBERTO M, ZITO F. Scar formation following impulse noise-induced mechanical damage to the organ of Corti. J Laryngol Otol. 1988;102:2–9. doi: 10.1017/s0022215100103822. PubMed DOI

SAVARY E, HUGNOT JP, CHASSIGNEUX Y, TRAVO C, DUPERRAY C, Van de WATER T, ZINE A. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells. 2007;25:332–339. doi: 10.1634/stemcells.2006-0303. PubMed DOI

SAYYID ZN, WANG T, CHEN L, JONES SM, CHENG AG. Atoh1 directs regeneration and functional recovery of the mature mouse vestibular system. Cell Rep. 2019;28:312–324. doi: 10.1016/j.celrep.2019.06.028. PubMed DOI PMC

SCHEFFER DI, SHEN J, COREY DP, CHEN ZY. Gene expression by mouse inner ear hair cells during development. J Neurosci. 2015;35:6366–6380. doi: 10.1523/jneurosci.5126-14.2015. PubMed DOI PMC

SHIBATA SB, RAPHAEL Y. Future approaches for inner ear protection and repair. J Commun Disord. 2010;43:295–310. doi: 10.1016/j.jcomdis.2010.04.001. PubMed DOI PMC

SHIBATA SB, BUDENZ CL, BOWLING SA, PFINGST BE, RAPHAEL Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res. 2011;281:56–64. doi: 10.1016/j.heares.2011.04.019. PubMed DOI PMC

SHIBATA SB, CORTEZ SR, BEYER LA, WILER JA, Di POLO A, PFINGST BE, RAPHAEL Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol. 2010;223:464–472. doi: 10.1016/j.expneurol.2010.01.011. PubMed DOI PMC

SIMONNEAU L, GALLEGO M, PUJOL R. Comparative expression patterns of T-, N-, E-cadherins, beta-catenin, and polysialic acid neural cell adhesion molecule in rat cochlea during development: implications for the nature of Kolliker's organ. J Comp Neurol. 2003;459:113–126. doi: 10.1002/cne.10604. PubMed DOI

SMITTKAMP S, PARK D, GIROD D, DURHAM D. Effects of age and cochlear damage on the metabolic activity of the avian cochlear nucleus. Hear Res. 2003;175:101–111. doi: 10.1016/s0378-5955(02)00714-1. PubMed DOI

SRIVASTAVA D, DEWITT N. In vivo cellular reprogramming: The next generation. Cell. 2016;166:1386–1396. doi: 10.1016/j.cell.2016.08.055. PubMed DOI PMC

SUGAWARA M, CORFAS G, LIBERMAN MC. Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol. 2005;6:136–147. doi: 10.1007/s10162-004-5050-1. PubMed DOI PMC

SUN Y, TANG W, CHANG Q, WANG Y, KONG W, LIN X. Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea. J Comp Neurol. 2009;516:569–579. doi: 10.1002/cne.22117. PubMed DOI PMC

TAKADA Y, BEYER LA, SWIDERSKI DL, O'NEAL AL, PRIESKORN DM, SHIVATZKI S, AVRAHAM KB, RAPHAEL Y. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res. 2014;309:124–135. doi: 10.1016/j.heares.2013.11.009. PubMed DOI PMC

TAMIYA S, LIU L, KAPLAN HJ. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest Ophthalmol Vis Sci. 2010;51:2755–2763. doi: 10.1167/iovs.09-4725. PubMed DOI

TAYLOR RR, JAGGER DJ, FORGE A. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea. PLoS One. 2012;7:e30577. doi: 10.1371/journal.pone.0030577. PubMed DOI PMC

TEUFERT K, LINTHICUM FJ, CONNELL S. The effect of organ of Corti loss on ganglion cell survival in humans. Otol Neurotol. 2006;27:1146–1151. doi: 10.1097/01.mao.0000232006.16363.44. PubMed DOI

TRAVNICKOVA M, BACAKOVA L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res. 2018;67:831–850. doi: 10.33549/physiolres.933820. PubMed DOI

WAGENAAR M, SCHUKNECHT H, NADOL J, BENRAAD-Van RENS M, PIEKE-DAHL S, KIMBERLING W, CREMERS C. Histopathologic features of the temporal bone in Usher syndrome type I. Arch Otolaryngol Head Neck Surg. 2000;126:1018–1023. doi: 10.1001/archotol.126.8.1018. PubMed DOI

WALTERS BJ, COAK E, DEARMAN J, BAILEY G, YAMASHITA T, KUO B, ZUO J. In vivo interplay between p27(Kip1), GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice. Cell Rep. 2017;19:307–320. doi: 10.1016/j.celrep.2017.03.044. PubMed DOI PMC

WANG GP, GUO JY, PENG Z, LIU YY, XIE J, GONG SS. Adeno-associated virus-mediated gene transfer targeting normal and traumatized mouse utricle. Gene Ther. 2014;21:958–966. doi: 10.1038/gt.2014.73. PubMed DOI

WANG GP, CHATTERJEE I, BATTS SA, WONG HT, GONG TW, GONG SS, RAPHAEL Y. Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear Res. 2010;267:61–70. doi: 10.1016/j.heares.2010.03.085. PubMed DOI PMC

WANG GP, BASU I, BEYER LA, WONG HT, SWIDERSKI DL, GONG SS, RAPHAEL Y. Severe streptomycin ototoxicity in the mouse utricle leads to a flat epithelium but the peripheral neural degeneration is delayed. Hear Res. 2017;355:33–41. doi: 10.1016/j.heares.2017.09.004. PubMed DOI PMC

WARNECKE A, MELLOTT AJ, RÖMER A, LENARZ T, STAECKER H. Advances in translational inner ear stem cell research. Hear Res. 2017;353:76–86. doi: 10.1016/j.heares.2017.05.011. PubMed DOI

WILLOTT JF, BROSS LS, McFADDEN SL. Morphology of the cochlear nucleus in CBA/J mice with chronic, severe sensorineural cochlear pathology induced during adulthood. Hear Res. 1994;74:1–21. doi: 10.1016/0378-5955(94)90171-6. PubMed DOI

WISE AK, HUME CR, FLYNN BO, JEELALL YS, SUHR CL, SGRO BE, O'LEARY SJ, SHEPHERD RK, RICHARDSON RT. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther. 2010;18:1111–1122. doi: 10.1038/mt.2010.28. PubMed DOI PMC

YAMASOBA T, KONDO K. Supporting cell proliferation after hair cell injury in mature guinea pig cochlea in vivo. Cell Tissue Res. 2006;325:23–31. doi: 10.1007/s00441-006-0157-9. PubMed DOI

YAMOAH EN, LI M, SHAH A, ELLIOTT KL, CHEAH K, XU PX, PHILLIPS S, YOUNG SM, JR, EBERL DF, FRITZSCH B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev. 2020;59:101042. doi: 10.1016/j.arr.2020.101042. PubMed DOI PMC

YANG SM, CHEN W, GUO WW, JIA S, SUN JH, LIU HZ, YOUNG WY, HE DZZ. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One. 2012;7:e46355. doi: 10.1371/journal.pone.0046355. PubMed DOI PMC

ZHANG L, HU Z. Sensory epithelial cells acquire features of prosensory cells via epithelial to mesenchymal transition. Stem Cells Dev. 2012;21:1812–1821. doi: 10.1089/scd.2011.0443. PubMed DOI PMC

ZHONG C, FU Y, PAN W, YU J, WANG J. Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: function and interplay. Dev Biol. 2019;446:133–141. doi: 10.1016/j.ydbio.2018.12.025. PubMed DOI

ZILBERSTEIN Y, LIBERMAN MC, CORFAS G. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci. 2012;32:405–410. doi: 10.1523/jneurosci.4678-11.2012. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...