Noisy three-player dilemma game: robustness of the quantum advantage
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32904778
PubMed Central
PMC7458494
DOI
10.1007/s11128-020-02830-2
PII: 2830
Knihovny.cz E-zdroje
- Klíčová slova
- Effect of noise on quantum advantages, Experimental realization of a quantum game, Quantum game, Three-party dilemma game,
- Publikační typ
- časopisecké články MeSH
Games involving quantum strategies often yield higher payoff. Here, we study a practical realization of the three-player dilemma game using the superconductivity-based quantum processors provided by IBM Q Experience. We analyze the persistence of the quantum advantage under corruption of the input states and how this depends on parameters of the payoff table. Specifically, experimental fidelity and error are observed not to be properly anti-correlated; i.e., there are instances where a class of experiments with higher fidelity yields a greater error in the payoff. Further, we find that the classical strategy will always outperform the quantum strategy if corruption is higher than 50%.
Delhi Technological University Bawana Road Delhi 110042 India
Jaypee Institute of Information Technology A 10 Sector 62 Noida UP 201309 India
Poornaprajna Institute of Scientific Research Bengaluru Karnataka 560080 India
Zobrazit více v PubMed
Flitney AP, Abbott D. An introduction to quantum game theory. Fluct. Noise Lett. 2002;2:R175–R187.
Piotrowski EW, Sładkowski J. An invitation to quantum game theory. Int. J. Theor. Phys. 2003;42:1089–1099.
Li X, Gao L, Li W. Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Exp. Syst. Appl. 2012;39:288–297.
Elhenawy, M., Elbery, A.A., Hassan, A.A., Rakha, H.A.: An intersection game-theory-based traffic control algorithm in a connected vehicle environment. In: 2015 IEEE 18th international conference on intelligent transportation systems, pp. 343–347. IEEE (2015)
Laszka, A., Szeszlér, D., Buttyán, L.: Game-theoretic robustness of many-to-one networks. In: International Conference on Game Theory for Networks, pp. 88–98. Springer (2012)
Dodis, Y., Rabin, T., et al.: Cryptography and game theory. Algorithmic game theory, pp. 181–207. (2007)
Li A, Yong X. Entanglement guarantees emergence of cooperation in quantum prisoner’s dilemma games on networks. Sci. Rep. 2014;4:1–7. PubMed PMC
Nawaz A, Toor AH. Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 2004;37:4437.
Meyer DA. Quantum strategies. Phys. Rev. Lett. 1999;82:1052.
Eisert J, Wilkens M, Lewenstein M. Quantum games and quantum strategies. Phys. Rev. Lett. 1999;83:3077.
Du J, Xu X, Li H, Zhou X, Han R. Playing prisoner’s dilemma with quantum rules. Fluct. Noise Lett. 2002;2:R189–R203.
Werner RF. Optimal cloning of pure states. Phys. Rev. A. 1998;58:1827.
Tomamichel M, Fehr S, Kaniewski J, Wehner S. A monogamy-of-entanglement game with applications to device-independent quantum cryptography. New J. Phys. 2013;15:103002.
Fritz T, Sainz AB, Augusiak R, et al. Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 2013;4:1. PubMed
Oppenheim J, Wehner S. The uncertainty principle determines the nonlocality of quantum mechanics. Science. 2010;330:1072. PubMed
Anshu A, Høyer P, Mhalla M, Perdrix S. Contextuality in multipartite pseudo-telepathy graph games. J. Comput. Syst. Sci. 2020;107:156–165.
Popescu S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014;10:264–270.
Chen, C., Dong, D., Dong, Y., Shi, Q.: A quantum reinforcement learning method for repeated game theory. In: 2006 International Conference on Computational Intelligence and Security volume 1, pp. 68–72. IEEE (2006)
Clausen J, Briegel HJ. Quantum machine learning with glow for episodic tasks and decision games. Phys. Rev. A. 2018;97:022303.
Benjamin SC, Hayden PM. Multiplayer quantum games. Phys. Rev. A. 2001;64:030301. PubMed
Johnson NF. Playing a quantum game with a corrupted source. Phys. Rev. A. 2001;63:020302.
Daskalakis C, Papadimitriou CH. Three-player games are hard. Electr. Colloq. Comput. Complex. 2005;139:81–87.
Daskalakis C, Goldberg PW, Papadimitriou CH. The complexity of computing a Nash equilibrium. SIAM J. Comput. 2009;39:195–259.
Mitra A, Sivapriya K, Kumar A. Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. J. Magn. Reson. 2007;187:306–313. PubMed
Kolenderski P, Sinha U, Youning L, et al. Aharon-Vaidman quantum game with a Young-type photonic qutrit. Phys. Rev. A. 2012;86:012321.
Pinheiro A, Souza C, Caetano D, et al. Vector vortex implementation of a quantum game. JOSA B. 2013;30:3210–3214.
Schmid C, Flitney AP, Wieczorek W, et al. Experimental implementation of a four-player quantum game. New J. Phys. 2010;12:063031.
Zhou L, Kuang L-M. Proposal for optically realizing a quantum game. Phys. Lett. A. 2003;315:426–430.
Solmeyer N, Linke NM, Figgatt C, et al. Demonstration of a Bayesian quantum game on an ion-trap quantum computer. Quantum Sci. Technol. 2018;3:045002.
Glazer J, Ma C-TA. Efficient allocation of a “prize”-King Solomon’s dilemma. Games Econ. Behav. 1989;1:222–233.
Teng, Y., Jones, R., Marusich, L., et al.: Trust and situation awareness in a 3-player diner’s dilemma game. In: 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 9–15. IEEE (2013)
Bankes, S.: Exploring the foundations of artificial societies: Experiments in evolving solutions to iterated N-player prisoner’s dilemma. In: Artificial Life IV, pp. 337–342. MIT Press Cambridge, MA (1994)
Morgan JP, Chaganty NR, Dahiya RC, Doviak MJ. Let’s make a deal: the player’s dilemma. Am. Stat. 1991;45:284–287.
Özdemir ŞK, Shimamura J, Imoto N. Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games. Phys. Lett. A. 2004;325:104–111.
Chen J-L, Kwek LC, Oh CH. Noisy quantum game. Phys. Rev. A. 2002;65:052320.
Chen L, Ang H, Kiang D, Kwek L, Lo C. Quantum prisoner dilemma under decoherence. Phys. Lett. A. 2003;316:317–323.
Sisodia M, Shukla A, Thapliyal K, Pathak A. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inform. Process. 2017;16:292.
Sisodia, M., Shukla, A., de Almeida, A.A., Dueck, G.W., Pathak, A.: Circuit optimization for IBM processors: A way to get higher fidelity and higher values of nonclassicality witnesses. arXiv preprint arXiv:1812.11602 (2018)
Tian J, Uchida N. Monkeys in a prisoner’s dilemma. Cell. 2015;160:1046–1048. PubMed
Shukla, A., Sisodia, M., Pathak, A.: Complete characterization of the directly implementable quantum gates used in the IBM quantum processors. arXiv preprint arXiv:1805.07185 (2018)
Sousa, P.B., Ramos, R.V.: Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate. arXiv preprint arXiv:quant-ph/0602174 (2006)
Sisodia M, Shukla A, Pathak A. Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A. 2017;381:3860–3874.
Vishnu P, Joy D, Behera BK, Panigrahi PK. Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inform. Process. 2018;17:274.
Mohseni M, Lidar DA. Direct characterization of quantum dynamics. Phys. Rev. Lett. 2006;97:170501. PubMed
Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79.
Torlai G, Melko R. Machine-learning quantum states in the NISQ era. Ann. Rev. Condens. Matter Phys. 2019;11:325.
Brunner N, Linden N. Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 2013;4:2057. PubMed
Iqbal A, Chappell JM, Abbott D. The equivalence of Bell’s inequality and the Nash inequality in a quantum game-theoretic setting. Phys. Lett. A. 2018;382:2908–2913.
Kaur H, Kumar A. Game-theoretic perspective of ping-pong protocol. Phys. A Stat. Mech Its Appl. 2018;490:1415–1422.
Krawec, W. O., Miao, F.: Game theoretic security framework for quantum key distribution. In: International Conference on Decision and Game Theory for Security, pp. 38–58. Springer (2018)
Pathak A. Elements of Quantum Computation and Quantum Communication. New York: Taylor & Francis; 2013.
Thapliyal K, Pathak A, Banerjee S. Quantum cryptography over non-Markovian channels. Quantum Inform. Process. 2017;16:115.
Ekert AK. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661. PubMed