Biomass, abundances, and abundance and geographical range size relationship of birds along a rainforest elevational gradient in Papua New Guinea
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
32923179
PubMed Central
PMC7457928
DOI
10.7717/peerj.9727
PII: 9727
Knihovny.cz E-resources
- Keywords
- Altitudinal gradient, Area compensation, Feeding guilds, Mt. Wilhelm, Non-passerines, Passerines,
- Publication type
- Journal Article MeSH
The usually positive inter-specific relationship between geographical range size and the abundance of local bird populations comes with exceptions. On continents, the majority of these exceptions have been described from tropical montane areas in Africa, where geographically-restricted bird species are unusually abundant. We asked how the local abundances of passerine and non-passerine bird species along an elevational gradient on Mt. Wilhelm, Papua New Guinea relate to their geographical range size. We collected data on bird assemblages at eight elevations (200-3,700 m, at 500 m elevational increments). We used a standardized point-counts at 16 points at each elevational study site. We partitioned the birds into feeding guilds, and we obtained data on geographical range sizes from the Bird-Life International data zone. We observed a positive relationship between abundance and geographical range size in the lowlands. This trend changed to a negative one towards higher elevations. The total abundances of the assemblage showed a hump-shaped pattern along the elevational gradient, with passerine birds, namely passerine insectivores, driving the observed pattern. In contrast to abundances, the mean biomass of the bird assemblages decreased with increasing elevation. Our results show that montane bird species maintain dense populations which compensate for the decreased available area near the top of the mountain.
Biology Centre of the Czech Academy of Sciences Entomology Institute Ceske Budejovice Czech Republic
The New Guinea Binatang Research Centre Madang Papua New Guinea
University of South Bohemia Faculty of Science Ceske Budejovice Czech Republic
See more in PubMed
Banks-Leite C, Pardini R, Boscolo D, Cassano CR, Püttker T, Barros CS, Barlow J. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. Journal of Applied Ecology. 2014;51:849–859. doi: 10.1111/1365-2664.12272. PubMed DOI PMC
Blackburn TM, Cassey P, Gaston KJ. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology. 2006;75:1426–1439. doi: 10.1111/j.1365-2656.2006.01167.x. PubMed DOI
Borregaard MK, Rahbek C. Causality of the relationship between geographic distribution and species abundance. The Quarterly Review of Biology. 2010;85:3–25. doi: 10.1086/650265. PubMed DOI
Brown JH. On the relationship between abundance and distribution of species. The American Naturalist. 1984;124:255–279. doi: 10.1086/284267. DOI
Buckland S, Anderson D, Burnham K, Laake J, Borchers D, Thomas L. Introduction to distance sampling: Oxford University Press. Oxford Considerations and Management Recommendations: Wildlife Society Bulletin. 2001;34:1393–1395.
Ding TS, Yuan HW, Geng S, Lin YS, Lee PF. Energy flux, body size and density in relation to bird species richness along an elevational gradient in Taiwan. Global Ecology and Biogeography. 2005;14:299–306. doi: 10.1111/j.1466-822X.2005.00159.x. DOI
Dolton CS, De Brooke ML. Changes in the biomass of birds breeding in Great Britain, 1968–88. Bird Study. 1999;46:274–278.
Ferenc M, Fjeldså J, Sedláček O, Motombi FN, Nana ED, Mudrová K, Hořák D. Abundance-area relationships in bird assemblages along an Afrotropical elevational gradient: space limitation in montane forest selects for higher population densities. Oecologia. 2016;181:225–233. doi: 10.1007/s00442-016-3554-0. PubMed DOI
Fjeldså J, Bowie RC, Rahbek C. The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics. 2012;43:249–265. doi: 10.1146/annurev-ecolsys-102710-145113. DOI
Freeman BG. No evidence for a positive correlation between abundance and range size in birds along a New Guinean elevational gradient. Emu-Austral Ornithology. 2018;119:308–316.
Gaston KJ. The multiple forms of the interspecific abundance-distribution relationship. Oikos. 1996a;76:211–220.
Gaston KJ. Species-range-size distributions: patterns, mechanisms and implications. Trends in Ecology & Evolution. 1996b;11:197–201. doi: 10.1016/0169-5347(96)10027-6. PubMed DOI
Gaston KJ, Blackburn TM. Pattern and process in macroecology. Blackwell Publishing; Oxford: 2000.
Gaston KJ, Blackburn TM, Greenwood JJ, Gregory RD, Quinn RM, Lawton JH. Abundance–occupancy relationships. Journal of Applied Ecology. 2000;37:39–59. doi: 10.1046/j.1365-2664.2000.00485.x. DOI
Ghosh-Harihar MJ. Distribution and abundance of foliage-arthropods across elevational gradients in the east and west Himalayas. Journal of Animal Ecology. 2013;28:125–130.
Hazel RJ. PhD thesis. 2019. Functional alpha- and beta-diversity of birds and fruits on an elevational gradient in Papua New Guinea.
Hoyo DJ, Elliott J, Sargatal J, Christie DA. Handbook of the birds of the world. Vol. 1–16. Lynx Editions; Barcelona: 1992–2011.
Janzen DH, Ataroff M, Fariñas M, Reyes S, Rincon N, Soler A, Soriano P, Vera M. Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica. 1976;8:193–203. doi: 10.2307/2989685. DOI
Johnson C. Species extinction and the relationship between distribution and abundance. Nature. 1998;394:272–274. doi: 10.1038/28385. DOI
Klopfer PH, MacArthur RH. Niche size and faunal diversity. American Naturalist. 1960;94:293–300.
Loiselle BA, Blake JG. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology. 1991;72:180–193.
MacArthur RH. Geographical ecology: patterns in the distribution of species. Princeton, New Jersey: Princeton University Press; 1972.
MacArthur RH, Diamond JM, Karr JR. Density compensation in island faunas. Ecology. 1972;53:330–342. doi: 10.2307/1934090. DOI
Marki PZ, Sam K, Koane B, Kristensen JB, Kennedy JD, Jønsson KA. New and noteworthy bird records from the Mt. Wilhelm elevational gradient, Papua New Guinea. Bulletin of Brittish Ornithology Club. 2016;137:263–271.
McAlpine JR, Keig R, Falls R. Climate of Papua New Guinea. CSIRO and Australian National University Press; Canberra: 1983.
McCain CM. Global analysis of bird elevational diversity. Global Ecology and Biogeography. 2009;18:346–360. doi: 10.1111/j.1466-8238.2008.00443.x. DOI
McNab BK. Ecological factors affect the level and scaling of avian BMR. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2009;152:22–45. PubMed
Nana ED, Sedláček O, Bayly N, Ferenc M, Albrecht T, Reif J, Motombi FN, Hořák D. Comparison of avian assemblage structures in two upper montane forests of the Cameroon volcanic line: lessons for bird conservation. Biodiversity and Conservation. 2014;23:1469–1484. doi: 10.1007/s10531-014-0677-7. DOI
Paijmans K. In: New Guinea vegetation. Paijmans K, editor. National University Press; Canberra: 1976. p. 212.
Päivinen J, Grapputo A, Kaitala V, Komonen A, Kotiaho JS, Saarinen K, Wahlberg N. Negative density-distribution relationship in butterflies. BMC Biology. 2005;3:5. doi: 10.1186/1741-7007-3-5. PubMed DOI PMC
Pratt TK, Beehler BM. Birds of New Guinea. Princeton, New Jersey: Princeton University Press; 2015.
Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson U, Ghosh-Harihar M, Ishtiaq F, Gupta SK. Niche filling slows the diversification of Himalayan songbirds. Nature. 2014;509:222–225. doi: 10.1038/nature13272. PubMed DOI
Rahbek C. The elevational gradient of species richness: a uniform pattern? Ecography. 1995;18:200–205. doi: 10.1111/j.1600-0587.1995.tb00341.x. DOI
Reeve AH, Borregaard MK, Fjeldså J. Negative range size–abundance relationships in Indo-Pacific bird communities. Ecography. 2016;39:990–997. doi: 10.1111/ecog.01622. DOI
Reif J, Hořák D, Sedláček O, Riegert J, Pešata M, Hrázský Z, Janeček Š, Storch D. Unusual abundance–range size relationship in an Afromontane bird community: the effect of geographical isolation? Journal of Biogeography. 2006;33:1959–1968. doi: 10.1111/j.1365-2699.2006.01547.x. DOI
Romdal TS. Altitudinal distribution and abundance patterns of bird species in the Eastern Arc Mountains, Tanzania. Scopus. 2001;21:35–54.
Sam K, Koane B. New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bulletin of the British Ornithologists’ Club. 2014;134:116–133.
Sam K, Koane B, Bardos DC, Jeppy S, Novotny V. Species richness of birds along a complete rain forest elevational gradient in the tropics: habitat complexity and food resources matter. Journal of Biogeography. 2019;46:279–290. doi: 10.1111/jbi.13482. DOI
Sam K, Koane B, Jeppy S, Sykorova J, Novotny V. Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports. 2017;7:44018. doi: 10.1038/srep44018. PubMed DOI PMC
Sam K, Koane B, Sam L, Mrazova A, Segar S, Volf M, Moos M, Simek P, Sisol M, Novotny V. Insect herbivory and herbivores of Ficus species along a rain forest elevational gradient in Papua New Guinea. Biotropica. 2020;52:263–276. doi: 10.1111/btp.12741. DOI
Segar ST, Volf M, Zima Jnr J, Isua B, Sisol M, Sam L, Sam K, Souto-Vilarós D, Novotny V. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. Journal of Evolutionary Biology. 2017;30:512–523. doi: 10.1111/jeb.13020. PubMed DOI
Supriya K, Moreau CS, Sam K, Price TD. Analysis of tropical and temperate elevational gradients in arthropod abundance. Frontiers of Biogeography. 2019;11:e4310
Terborgh J. Bird species diversity on an Andean elevational gradient. Ecology. 1977;58:1007–1019. doi: 10.2307/1936921. DOI
Theuerkauf J, Chartendrault V, Desmoulins F, Barré N, Gula R. Positive range–abundance relationships in Indo-Pacific bird communities. Journal of Biogeography. 2017;44:2161–2163. doi: 10.1111/jbi.13021. DOI
Volf M, Laitila JE, Kim J, Sam L, Sam K, Isua B, Sisol M, Wardhaugh CW, Vejmelka F, Miller SE, Weiblen GD. Compound specific trends of chemical defences in Ficus along an elevational gradient reflect a complex selective landscape. Journal of Chemical Ecology. 2020;46:442–454. doi: 10.1007/s10886-020-01173-7. PubMed DOI
Williams S, Williams YM, VanDerWal J, Isaac JL, Shoo LP, Johnson CN. Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:19737–19741. doi: 10.1073/pnas.0901640106. PubMed DOI PMC