The Effect of Tobacco Smoking and Smoking Cessation on Urinal miRNAs in a Pilot Study

. 2020 Sep 10 ; 10 (9) : . [epub] 20200910

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32927854

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
61989592 RVO CEP - Centrální evidence projektů
LF_2018_015 IGA PU

The diseases associated with tobacco smoking affect miRNAs and small single-stranded non-coding RNAs. However, there are no data on urinal miRNAs in healthy smokers. We searched for the possible effect of smoking and smoking cessation on miRNA urine expression. For screening, Affymetrix miRNA 4.0 arrays were used in 33 urine samples obtained from six never smokers and from current smokers in three time-points before smoking cessation (n = 10), after short time abstinence (3-8 weeks), and after long-term abstinence (1 year). For validation, a quantitative (q) polymerase chain reaction (PCR) method was used in 93 urine samples obtained from 18 never smokers and 25 current smokers in three time-points before smoking cessation, after short time abstinence (3-8 weeks), and after long-term abstinence (1 year). In screening analysis, 5 miRNAs (hsa-miR-3620-5p, hsa-miR-3613-5p, hsa-miR-3921, hsa-miR-5094, and hsa-miR-337-3p) were dysregulated in current vs. never smokers after multiple testing corrections. Smoking cessation was accompanied by miRNA dysregulation that did not reach a significant level after a multiple testing correction. In validation analysis, three miRNAs correlated with cotinine, but they were affected neither after smoking cessation nor between current and never smokers. Our whole-genome screening of 2.578 miRNAs and validation suggest that tobacco smoking has no or only a small effect on urinal miRNAs.

Zobrazit více v PubMed

Vestbo J., Hurd S.S., Agustí A., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP. PubMed DOI

Cerveri I., Cazzoletti L., Corsico A., Marcon A., Niniano R., Grosso A., Ronzoni V., Accordini S., Janson C., Pin I., et al. The impact of cigarette smoking on asthma: A population-based international cohort study. Int. Arch. Allergy Immunol. 2012;158:175–183. doi: 10.1159/000330900. PubMed DOI PMC

Tonini G., D’Onofrio L., Dell’Aquila E., Pezzuto A. New molecular insights in tobacco-induced lung cancer. Future Oncol. 2013;9:649–655. doi: 10.2217/fon.13.32. PubMed DOI

Lee P.N., Forey B.A., Coombs K.J. Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer. 2012;12:385. doi: 10.1186/1471-2407-12-385. PubMed DOI PMC

Cumberbatch M.G.K., Jubber I., Black P.C., Esperto F., Figueroa J.D., Kamat A.M., Kiemeney L., Lotan Y., Pang K., Silverman D.T., et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018;74:784–795. doi: 10.1016/j.eururo.2018.09.001. PubMed DOI

Aune D., Schlesinger S., Norat T., Riboli E. Tobacco smoking and the risk of sudden cardiac death: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2018;33:509–521. doi: 10.1007/s10654-017-0351-y. PubMed DOI PMC

Momi N., Kaur S., Rachagani S., Ganti A.K., Batra S.K., Rachgani S. Smoking and microRNA dysregulation: A cancerous combination. Trends Mol. Med. 2014;20:36–47. doi: 10.1016/j.molmed.2013.10.005. PubMed DOI PMC

Fujii T., Shimada K., Nakai T., Ohbayashi C. MicroRNAs in Smoking-Related Carcinogenesis: Biomarkers, Functions, and Therapy. J. Clin. Med. 2018;7:98. doi: 10.3390/jcm7050098. PubMed DOI PMC

Stroynowska-Czerwinska A., Fiszer A., Krzyzosiak W.J. The panorama of miRNA-mediated mechanisms in mammalian cells. Cell. Mol. Life Sci. 2014;71:2253–2270. doi: 10.1007/s00018-013-1551-6. PubMed DOI PMC

Makarova J., Shkurnikov M., Wicklein D., Lange T., Samatov T.R., Turchinovich A.A., Tonevitsky A. Intracellular and extracellular microRNA: An update on localization and biological role. Prog. Histochem. Cytochem. 2016;51:33–49. doi: 10.1016/j.proghi.2016.06.001. PubMed DOI

Ezzie M.E., Crawford M., Cho J.H., Orellana R., Zhang S., Gelinas R., Batte K., Yu L., Nuovo G., Galas D., et al. Gene expression networks in COPD: MicroRNA and mRNA regulation. Thorax. 2011;67:122–131. doi: 10.1136/thoraxjnl-2011-200089. PubMed DOI

Chang W.A., Tsai M.J., Jian S.F., Sheu C.C., Kuo P.L. Systematic analysis of transcriptomic profiles of COPD airway epithelium using next-generation sequencing and bioinformatics. Int. J. Chronic Obstr. Pulm. Dis. 2018;13:2387–2398. doi: 10.2147/COPD.S173206. PubMed DOI PMC

Martinez-Nunez R.T., Rupani H., Platé M., Niranjan M., Chambers R.C., Howarth P.H., Sanchez-Elsner T. Genome-Wide Posttranscriptional Dysregulation by MicroRNAs in Human Asthma as Revealed by Frac-seq. J. Immunol. 2018;201:251–263. doi: 10.4049/jimmunol.1701798. PubMed DOI PMC

Rodrigo-Muñoz J.M., Rial J.M., Sastre B., Cañas J.A., Mahillo-Fernandez I., Quirce S., Sastre J., Cosio B.G., Del Pozo V. Circulating miRNAs as diagnostic tool for discrimination of respiratory disease: Asthma, asthma-chronic obstructive pulmonary disease (COPD) overlap and COPD. Allergy. 2019;74:2491–2494. doi: 10.1111/all.13916. PubMed DOI

Ranade A.R., Cherba D., Sridhar S., Richardson P., Webb C., Paripati A., Bowles B., Weiss G.J. MicroRNA 92a-2*: A Biomarker Predictive for Chemoresistance and Prognostic for Survival in Patients with Small Cell Lung Cancer. J. Thorac. Oncol. 2010;5:1273–1278. doi: 10.1097/JTO.0b013e3181dea6be. PubMed DOI

Xie Y., Todd N.W., Liu Z., Zhan M., Fang H., Peng H., Alattar M., Deepak J., Stass S.A., Jiang F. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010;67:170–176. doi: 10.1016/j.lungcan.2009.04.004. PubMed DOI PMC

Wu S.G., Chang T.H., Liu Y.N., Shih J.Y. MicroRNA in Lung Cancer Metastasis. Cancers. 2019;11:265. doi: 10.3390/cancers11020265. PubMed DOI PMC

Vu T., Yang S., Datta P.K. MiR-216b/Smad3/BCL-2 Axis Is Involved in Smoking-Mediated Drug Resistance in Non-Small Cell Lung Cancer. Cancers. 2020;12:1879. doi: 10.3390/cancers12071879. PubMed DOI PMC

Orth S.R., Hallan S.I. Smoking: A Risk Factor for Progression of Chronic Kidney Disease and for Cardiovascular Morbidity and Mortality in Renal Patients—Absence of Evidence or Evidence of Absence? Clin. J. Am. Soc. Nephrol. 2007;3:226–236. doi: 10.2215/CJN.03740907. PubMed DOI

Nandakumar P., Tin A., Grove M.L., Ma J., Boerwinkle E., Coresh J., Chakravarti A. MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension. PLoS ONE. 2017;12:e0176734. doi: 10.1371/journal.pone.0176734. PubMed DOI PMC

Lv L.L., Cao Y.H., Ni H.F., Xu M., Liu D., Liu H., Chen P.S., Liu B.C. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Physiol. 2013;305:F1220–F1227. doi: 10.1152/ajprenal.00148.2013. PubMed DOI

Conserva F., Barozzino M., Pesce F., Divella C., Oranger A., Papale M., Sallustio F., Simone S., Laviola L., Giorgino F., et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-47778-1. PubMed DOI PMC

Urquidi V., Netherton M., Gomes-Giacoia E., Serie D.J., Eckel-Passow J., Rosser C.J., Goodison S. A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget. 2016;7:86290–86299. doi: 10.18632/oncotarget.13382. PubMed DOI PMC

Dudziec E., Miah S., Choudhry H., Owen H.C., Blizard S., Glover M., Hamdy F.C., Catto J. Hypermethylation of CpG Islands and Shores around Specific MicroRNAs and Mirtrons Is Associated with the Phenotype and Presence of Bladder Cancer. Clin. Cancer Res. 2010;17:1287–1296. doi: 10.1158/1078-0432.CCR-10-2017. PubMed DOI

Tölle A., Jung M., Rabenhorst S., Kilic E., Jung K., Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol. Rep. 2013;30:1949–1956. doi: 10.3892/or.2013.2621. PubMed DOI

Snowdon J., Boag S., Feilotter H., Izard J., Siemens D.R. A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can. Urol. Assoc. J. 2013;7:28–32. doi: 10.5489/cuaj.278. PubMed DOI PMC

Hanke M., Hoefig K., Merz H., Feller A.C., Kausch I., Jocham D., Warnecke J.M., Sczakiel G. A robust methodology to study urine microRNA as tumor marker: MicroRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2010;28:655–661. doi: 10.1016/j.urolonc.2009.01.027. PubMed DOI

Tsivian M., Moreira D.M., Caso J.R., Mouraviev V., Polascik T.J. Cigarette smoking is associated with advanced renal cell carcinoma. J. Clin. Oncol. 2011;29:2027–2031. doi: 10.1200/JCO.2010.30.9484. PubMed DOI

Du L., Jiang X., Duan W., Wang R., Wang L., Zheng G., Yan K., Wang L., Li J., Zhang X., et al. Cell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Oncotarget. 2017;8:40832–40842. doi: 10.18632/oncotarget.16586. PubMed DOI PMC

Pospisilova S., Pazourková E., Horinek A., Brisuda A., Svobodová I., Soukup V., Hrbacek J., Čapoun O., Hanuš T., Mares J., et al. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma. 2016;63:799–808. doi: 10.4149/neo_2016_518. PubMed DOI

Fedorko M., Juracek J., Stanik M., Svoboda M., Poprach A., Buchler T., Pacik D., Dolezel J., Slaby O. Detection of let-7 miRNAs in urine supernatant as potential diagnostic approach in non-metastatic clear-cell renal cell carcinoma. Biochem. Med. 2017;27:411–417. doi: 10.11613/BM.2017.043. PubMed DOI PMC

Pezzuto A., Carico E. Effectiveness of smoking cessation in smokers with COPD and nocturnal oxygen desaturation: Functional analysis. Clin. Respir. J. 2019;14:29–34. doi: 10.1111/crj.13096. PubMed DOI

Carvalho B.D.S., Irizarry R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC

Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013. [(accessed on 10 September 2020)]. Available online: http://www.R-project.org/

Smyth G.K. LIMMA: Linear Models for Microarray Data. In: Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S., editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer; Berlin/Heidelberg, Germany: 2005. pp. 397–420.

Schembri F., Sridhar S., Perdomo C., Gustafson A.M., Zhang X., Ergun A., Lu J., Liu G., Bowers J., Vaziri C., et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl. Acad. Sci. USA. 2009;106:2319–2324. doi: 10.1073/pnas.0806383106. PubMed DOI PMC

Su M.W., Yu S.L., Lin W.C., Tsai C.H., Chen P.H., Lee Y.L. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicol. Appl. Pharmacol. 2016;305:169–175. doi: 10.1016/j.taap.2016.06.020. PubMed DOI

Suzuki K., Yamada H., Nagura A., Ohashi K., Ishikawa H., Yamazaki M., Ando Y., Ichino N., Osakabe K., Sugimoto K., et al. Association of cigarette smoking with serum microRNA expression among middle-aged Japanese adults. Fujita Med. J. 2016;2:1–5.

Wang G., Wang R., Strulovici-Barel Y., Salit J., Staudt M.R., Ahmed J., Tilley A.E., Yee-Levin J., Hollmann C., Harvey B.G., et al. Persistence of Smoking-Induced Dysregulation of MiRNA Expression in the Small Airway Epithelium Despite Smoking Cessation. PLoS ONE. 2015;10:e0120824. doi: 10.1371/journal.pone.0120824. PubMed DOI PMC

Willinger C.M., Rong J., Tanriverdi K., Courchesne P.L., Huan T., Wasserman G.A., Lin H., Dupuis J., Joehanes R., Jones M.R., et al. MicroRNA Signature of Cigarette Smoking and Evidence for a Putative Causal Role of MicroRNAs in Smoking-Related Inflammation and Target Organ Damage. Circ. Cardiovasc. Genet. 2017;10:e001678. doi: 10.1161/CIRCGENETICS.116.001678. PubMed DOI PMC

Izzotti A., Longobardi M., La Maestra S., Micale R.T., Pulliero A., Camoirano A., Geretto M., D’Agostini F., Balansky R., Miller M.S., et al. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke. Theranostics. 2018;8:2147–2160. doi: 10.7150/thno.22726. PubMed DOI PMC

Yang X., Zhang Q., Zhang M., Su W., Wang Z., Li Y., Zhang J., Beer D.G., Yang S., Chen G. Serum microRNA Signature is Capable of Early Diagnosis for Non-Small Cell Lung Cancer. Int. J. Biol. Sci. 2019;15:1712–1722. doi: 10.7150/ijbs.33986. PubMed DOI PMC

Li Q., Huang Q., Cheng S., Wu S., Sang H., Hou J. Circ_ZNF124 promotes non-small cell lung cancer progression by abolishing miR-337-3p mediated downregulation of JAK2/STAT3 signaling pathway. Cancer Cell Int. 2019;19:291. doi: 10.1186/s12935-019-1011-y. PubMed DOI PMC

Du L., Subauste M.C., DeSevo C., Zhao Z., Baker M., Borkowski R., Schageman J.J., Greer R., Yang C.R., Suraokar M., et al. miR-337-3p and Its Targets STAT3 and RAP1A Modulate Taxane Sensitivity in Non-Small Cell Lung Cancers. PLoS ONE. 2012;7:e39167. doi: 10.1371/journal.pone.0039167. PubMed DOI PMC

Bradicich M., Schuurmans M.M. Smoking status and second-hand smoke biomarkers in COPD, asthma and healthy controls. ERJ Open Res. 2020;6:00192–02019. doi: 10.1183/23120541.00192-2019. PubMed DOI PMC

Rounge T.B., Umu S.U., Keller A., Meese E., Ursin G., Tretli S., Lyle R., Langseth H. Circulating small non-coding RNAs associated with age, sex, smoking, body mass and physical activity. Sci. Rep. 2018;8:17650. doi: 10.1038/s41598-018-35974-4. PubMed DOI PMC

Ong J., Woldhuis R.R., Boudewijn I.M., Berg A.V.D., Kluiver J., Kok K., Terpstra M.M., Guryev V., de Vries M., Vermeulen C.J., et al. Age-related gene and miRNA expression changes in airways of healthy individuals. Sci. Rep. 2019;9:3765. doi: 10.1038/s41598-019-39873-0. PubMed DOI PMC

Hooten N.N., Abdelmohsen K., Gorospe M., Ejiogu N., Zonderman A.B., Evans M.K. microRNA Expression Patterns Reveal Differential Expression of Target Genes with Age. PLoS ONE. 2010;5:e10724. doi: 10.1371/journal.pone.0010724. PubMed DOI PMC

Turco A.E., Lam W., Rule A.D., Denic A., Lieske J.C., Miller V.M., Larson J.J., Kremers W.K., Jayachandran M. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys. J. Extracell. Vesicles. 2016;5:57. doi: 10.3402/jev.v5.29642. PubMed DOI PMC

Ranghino A., DiMuccio V., Papadimitriou E., Bussolati B. Extracellular vesicles in the urine: Markers and mediators of tissue damage and regeneration. Clin. Kidney J. 2014;8:23–30. doi: 10.1093/ckj/sfu136. PubMed DOI PMC

Fang D.Y., King H.W., Li J.Y., Gleadle J. Exosomes and the kidney: Blaming the messenger. Nephrology. 2012;18:1–10. doi: 10.1111/nep.12005. PubMed DOI

Pezzuto A., Stumbo L., Russano M., Crucitti P., Scarlata S., Caricato M., Tonini G. “Impact of Smoking Cessation Treatment” on Lung Function and Response Rate in EGFR Mutated Patients: A Short-Term Cohort Study. Recent Pat. Anticancer Drug Discov. 2015;10:342–351. doi: 10.2174/1574892810666150806111014. PubMed DOI

Pezzuto A., D’Ascanio M., Grieco A., Ricci A. Functional benefit of smoking cessation in severe COPD patients undergoing bronchial valve implantation. Eur. J. Intern. Med. 2019;68:55–59. doi: 10.1016/j.ejim.2019.07.032. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...