Hybrid and Model-Based Iterative Reconstruction Influences the Volumetry of Visceral and Subcutaneous Adipose Tissue on Ultra-Low-Dose CT

. 2020 Nov ; 28 (11) : 2083-2089. [epub] 20200914

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32929884

OBJECTIVE: The aim of this study was to compare three different reconstruction algorithms for the volumetry of the visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) on ultra-low-dose computed tomography (CT) images. METHODS: Thirty-seven male patients underwent ultra-low-dose CT at the level of the fourth lumbar vertebra (22.5 mm in z-axis). The acquisitions were reconstructed in 5-mm slices with 50% overlap using filtered back projection (FBP), hybrid iterative reconstruction (HIR), and iterative model-based reconstruction (IMR) techniques. The volume of VAT and SAT was measured using an interactive seed-growing segmentation and by thresholding (-30 to -190 HU). RESULTS: The volume of SAT measured by the interactive method was smaller in FBP compared with both HIR (P = 0.0011) and IMR (P = 0.0034), and the volume of VAT was greater in IMR compared with HIR (P = 0.0253) or FBP (P = 0.0065). Using the thresholding method, IMR volumes of VAT were greater compared with HIR (P < 0.0001), and volumes of SAT were greater compared with both HIR and FBP (both P ≤ 0.0001). The VAT to SAT ratio was greater in IMR compared with HIR or FBP (both P < 0.0001). CONCLUSIONS: There are significant differences among FBP, HIR, and IMR in the volumetry of SAT and VAT, their ratios, and attenuation measured on ultra-low-dose images.

Zobrazit více v PubMed

Janochova K, Haluzik M, Buzga M. Visceral fat and insulin resistance - what we know? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019;163:19-27.

Pou KM, Massaro JM, Hoffmann U, et al. Patterns of abdominal fat distribution: the Framingham Heart Study. Diabetes Care 2009;32:481-485.

Schousboe JT, Langsetmo L, Schwartz AV, et al. Comparison of associations of DXA and CT visceral adipose tissue measures with insulin resistance, lipid levels, and inflammatory markers. J Clin Densitom 2017;20:256-264.

Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med 2007;357:2277-2284.

Calabrese EJ, O’Connor MK. Estimating risk of low radiation doses - a critical review of the BEIR VII report and its Use of the Linear No-Threshold (LNT) hypothesis. Radiat Res 2014;182:463-474.

Willemink MJ, de Jong PA, Leiner T, et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013;23:1623-1631.

Lambert L, Ourednicek P, Jahoda J, Lambertova A, Danes J. Model-based vs hybrid iterative reconstruction technique in ultralow-dose submillisievert CT colonography. Br J Radiol 2015;88:20140667. doi:10.1259/bjr.20140667

Šiklová M, Krauzová E, Svobodová B, et al. Circulating monocyte and lymphocyte populations in healthy first-degree relatives of type 2 diabetic patients at fasting and during short-term hyperinsulinemia. Mediators Inflamm 2019;2019:1491083. doi:10.1155/2019/1491083

Lambert L, Ourednicek P, Briza J, et al. Sub-milliSievert ultralow-dose CT colonography with iterative model reconstruction technique. PeerJ 2016;4:e1883. doi:10.7717/peerj.1883

Gadekar T, Dudeja P, Basu I, Vashisht S, Mukherji S. Correlation of visceral body fat with waist-hip ratio, waist circumference and body mass index in healthy adults: a cross sectional study. Med J Armed Forces India 2020;76:41-46.

Wang H, Chen YE, Eitzman DT. Imaging body fat: techniques and cardiometabolic implications. Arterioscler Thromb Vasc Biol 2014;34:2217-2223.

Springer F, Ehehalt S, Sommer J, et al. Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. Eur J Radiol 2012;81:1488-1494.

Eastwood SV, Tillin T, Wright A, et al. Estimation of CT-derived abdominal visceral and subcutaneous adipose tissue depots from anthropometry in Europeans, South Asians and African Caribbeans. PLoS One 2013;8:e75085. doi:10.1371/journal.pone.0075085

Kim YJ, Lee SH, Kim TY, Park JY, Choi SH, Kim KG. Body fat assessment method using CT images with separation mask algorithm. J Digit Imaging 2013;26:155-162.

Ryckman EM, Summers RM, Liu J, del Rio AM, Pickhardt PJ. Visceral fat quantification in asymptomatic adults using abdominal CT: is it predictive of future cardiac events? Abdom Imaging 2015;40:222-226.

Yoshizumi T, Nakamura T, Yamane M, et al. Abdominal fat: standardized technique for measurement at CT. Radiology 1999;211:283-286.

Kullberg J, Hedström A, Brandberg J, et al. Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies. Sci Rep 2017;7:10425. doi:10.1038/s41598-017-08925-8

Ladeiras-Lopes R, Sampaio F, Bettencourt N, et al. The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events. Rev Esp Cardiol (Engl Ed) 2017;70:331-337.

Côté JA, Nazare J-A, Nadeau M, et al. Computed tomography-measured adipose tissue attenuation and area both predict adipocyte size and cardiometabolic risk in women. Adipocyte 2015;5:35-42.

Alvey NJ, Pedley A, Rosenquist KJ, et al. Association of fat density with subclinical atherosclerosis. J Am Heart Assoc 2014;3:e000788. doi:10.1161/JAHA.114.000788

Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004;24:1679-1691. doi:10.1148/rg.246045065

Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 2017;44:e360-e375.

Ryo M, Kishida K, Nakamura T, Yoshizumi T, Funahashi T, Shimomura I. Clinical significance of visceral adiposity assessed by computed tomography: a Japanese perspective. World J Radiol 2014;6:409-416.

Balentine CJ, Marshall C, Robinson C, et al. Validating quantitative obesity measurements in colorectal cancer patients. J Surg Res 2010;164:18-22.

McLaughlin PD, Murphy KP, Hayes SA, et al. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance. Insights Imaging 2014;5:217-230.

Alshamari M, Norrman E, Geijer M, Jansson K, Geijer H. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review. Eur Radiol 2016;26:1766-1774.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...