Dissociation of Valine Cluster Cations
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P 31149
Austrian Science Fund FWF - Austria
PubMed
32931273
PubMed Central
PMC7569673
DOI
10.1021/acs.jpca.0c07208
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Independently of the preparation method, for cluster cations of aliphatic amino acids, the protonated form MnH+ is always the dominant species. This is a surprising fact considering that in the gas phase, they dissociate primarily by the loss of 45 Da, i.e., the loss of the carboxylic group. In the present study, we explore the dissociation dynamics of small valine cluster cations Mn+ and their protonated counterparts MnH+ via collision-induced dissociation experiments and ab initio calculations with the aim to elucidate the formation of MnH+-type cations from amino acid clusters. For the first time, we report the preparation of valine cluster cations Mn+ in laboratory conditions, using a technique of cluster ion assembly inside He droplets. We show that the Mn+ cations cooled down to He droplet temperature can dissociate to form both Mn-1H+ and [Mn-COOH]+ ions. With increasing internal energy, the Mn-1H+ formation channel becomes dominant. Mn-1H+ ions then fragment nearly exclusively by monomer loss, describing the high abundance of protonated clusters in the mass spectra of amino acid clusters.
See more in PubMed
Yamashita M.; Fenn J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451–4459. 10.1021/j150664a002. DOI
Fenn J. B.; Mann M.; Meng C. K.; Wong S. F.; Whitehouse C. M. Electrospray Ionization–Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70. 10.1002/mas.1280090103. DOI
Rizzo T. R.; Stearns J. A.; Boyarkin O. V. Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions. Int. Rev. Phys. Chem. 2009, 28, 481–515. 10.1080/01442350903069931. DOI
Roithová J.; Gray A.; Andris E.; Jašík J.; Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc. Chem. Res. 2016, 49, 223–230. 10.1021/acs.accounts.5b00489. PubMed DOI
Tiefenthaler L.; Ameixa J.; Martini P.; Albertini S.; Ballauf L.; Zankl M.; Goulart M.; Laimer F.; von Haeften K.; Zappa F.; Scheier P. An Intense Source for Cold Cluster Ions of a Specific Composition. Rev. Sci. Instrum. 2020, 91, 03331510.1063/1.5133112. PubMed DOI
Davies J. A.; Besley N. A.; Yang S.; Ellis A. M. Probing Elusive Cations: Infrared Spectroscopy of Protonated Acetic Acid. J. Phys. Chem. Lett. 2019, 10, 2108–2112. 10.1021/acs.jpclett.9b00767. PubMed DOI
Franke P. R.; Brice J. T.; Moradi C. P.; Schaefer H. F. III; Douberly G. E. Ethyl + O2 in Helium Nanodroplets: Infrared Spectroscopy of the Ethylperoxy Radical. J. Phys. Chem. A 2019, 123, 3558–3568. 10.1021/acs.jpca.9b01867. PubMed DOI
Abdoul-Carime H.; Sanche L. Alteration of Protein Constituents Induced by Low Energy <40 eV Electrons III. The Aliphatic Amino Acids. J. Phys. Chem. B 2004, 108, 457–464. 10.1021/jp030413x. DOI
Arumainayagam C. R.; Lee H.-L.; Nelson R. B.; Haines D. R.; Gunawardane R. P. Low-Energy Electron-Induced Reactions in Condensed Matter. Surf. Sci. Rep. 2010, 65, 1–44. 10.1016/j.surfrep.2009.09.001. DOI
Junk G.; Svec H. The Mass Spectra of the -Amino Acids. J. Am. Chem. Soc. 1963, 85, 839–845. 10.1021/ja00890a001. DOI
Papp P.; Shchukin P.; Kočíšek J.; Matejčík Š. Electron Ionization and Dissociation of Aliphatic Amino Acids. J. Chem. Phys. 2012, 137, 105101.10.1063/1.4749244. PubMed DOI
Poully J.-C.; Vizcaino V.; Schwob L.; Delaunay R.; Kocisek J.; Eden S.; Chesnel J.-Y.; Méry A.; Rangama J.; Adoui L.; et al. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase. ChemPhysChem 2015, 16, 2389–2396. 10.1002/cphc.201500275. PubMed DOI
Denifl S.; Mähr I.; Ferreira da Silva F.; Zappa F.; Märk T. D.; Scheier P. Electron Impact Ionization Studies with the Amino Acid Valine in the Gas Phase and (Hydrated) in Helium Droplets. Eur. Phys. J. D 2009, 51, 73–79. 10.1140/epjd/e2008-00092-4. DOI
Lalanne M. R.; Achazi G.; Reichwald S.; Lindinger A. Association of Amino Acids Embedded in Helium Droplets Detected by Mass Spectrometry. Eur. Phys. J. D 2015, 69, 280.10.1140/epjd/e2015-60245-x. DOI
Weinberger N.; Ralser S.; Renzler M.; Harnisch M.; Kaiser A.; Denifl S.; Böhme D. K.; Scheier P. Ion Formation Upon Electron Collisions with Valine Embedded in Helium Nanodroplets. Eur. Phys. J. D 2016, 70, 91.10.1140/epjd/e2016-60737-1. DOI
Jochims H.-W.; Schwell M.; Chotin J.-L.; Clemino M.; Dulieu F.; Baumgärtel H.; Leach S. Photoion Mass Spectrometry of Five Amino Acids in the 6–22 eV Photon Energy Range. Chem. Phys. 2004, 298, 279–297. 10.1016/j.chemphys.2003.11.035. DOI
Toennies J. P.; Vilesov A. F. Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes. Angew. Chem., Int. Ed. 2004, 43, 2622–2648. 10.1002/anie.200300611. PubMed DOI
Gomez L. F.; Loginov E.; Sliter R.; Vilesov A. F. Sizes of Large He Droplets. J. Chem. Phys. 2011, 135, 154201.10.1063/1.3650235. PubMed DOI
Kramida A.; Ralchenko Yu.,; Reader J.; NIST ASD Team , NIST Atomic Spectra Database (ver. 5.7.1); [Online]. Available: https://physics.nist.gov/asd [2019, November 5]. National Institute of Standards and Technology: Gaithersburg, MD, 2019.
Laimer F.; Kranabetter L.; Tiefenthaler L.; Albertini S.; Zappa F.; Ellis A. M.; Gatchell M.; Scheier P. Highly Charged Droplets of Superfluid Helium. Phys. Rev. Lett. 2019, 123, 165301.10.1103/PhysRevLett.123.165301. PubMed DOI
Mauracher A.; Echt O.; Ellis A. M.; Yang S.; Bohme D. K.; Postler J.; Kaiser A.; Denifl S.; Scheier P. Cold Physics and Chemistry: Collisions, Ionization and Reactions Inside Helium Nanodroplets Close to Zero K. Phys. Rep. 2018, 751, 1–90. 10.1016/j.physrep.2018.05.001. DOI
Tiefenthaler L.; Kočišek J.; Scheier P. Cluster Ion Polymerization of Serine and Tryptophan, the Water Loss Channel. Eur. Phys. J. D 2020, 74, 85.10.1140/epjd/e2020-10014-y. DOI
Klassen J. S.; Kebarle P. Collision-Induced Dissociation Threshold Energies of Protonated Glycine, Glycinamide, and Some Related Small Peptides and Peptide Amino Amides. J. Am. Chem. Soc. 1997, 119, 6552–6563. 10.1021/ja962813m. DOI
Tolmachev A. V.; Vilkov A. N.; Bogdanov B.; PĂsa-Tolić L.; Masselon C. D.; Smith R. D. Collisional Activation of Ions in RF Ion Traps and Ion Guides: The Effective Ion Temperature Treatment. J. Am. Soc. Mass Spectrom. 2004, 15, 1616–1628. 10.1016/j.jasms.2004.07.014. PubMed DOI
Magnera T. F.; David D. E.; Stulik D.; Orth R. G.; Jonkman H. T.; Michl J. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. CollisionInduced Dissociation and Successive Hydration Energies of Gaseous Copper+ with 1-4 Water Molecules. J. Am. Chem. Soc. 1989, 111, 5036–5043. 10.1021/ja00196a003. DOI
Zhao Y.; Truhlar D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 119, 215–241. 10.1007/s00214-007-0401-8. DOI
Grimme S. Semiempirical GGA-Type Density Functional Constructed with a LongRange Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H. et al. Gaussian 16; Revision A.03., Gaussian Inc.: Wallingford CT, 2016.
Breneman C. M.; Wiberg K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11, 361–373. 10.1002/jcc.540110311. DOI
Beranova S.; Cai J.; Wesdemiotis C. Unimolecular Chemistry of Protonated Glycine and Its Neutralized Form in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 9492–9501. 10.1021/ja00142a016. DOI
O’Hair R. A. J.; Broughton P. S.; Styles M. L.; Frink B. T.; Hadad C. M. The Fragmentation Pathways of Protonated Glycine: a Computational Study. J. Am. Soc. Mass Spectrom. 2000, 11, 687–696. 10.1016/S1044-0305(00)00143-4. PubMed DOI
Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations