• This record comes from PubMed

Dissociation of Valine Cluster Cations

. 2020 Oct 15 ; 124 (41) : 8439-8445. [epub] 20200930

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
P 31149 Austrian Science Fund FWF - Austria

Independently of the preparation method, for cluster cations of aliphatic amino acids, the protonated form MnH+ is always the dominant species. This is a surprising fact considering that in the gas phase, they dissociate primarily by the loss of 45 Da, i.e., the loss of the carboxylic group. In the present study, we explore the dissociation dynamics of small valine cluster cations Mn+ and their protonated counterparts MnH+ via collision-induced dissociation experiments and ab initio calculations with the aim to elucidate the formation of MnH+-type cations from amino acid clusters. For the first time, we report the preparation of valine cluster cations Mn+ in laboratory conditions, using a technique of cluster ion assembly inside He droplets. We show that the Mn+ cations cooled down to He droplet temperature can dissociate to form both Mn-1H+ and [Mn-COOH]+ ions. With increasing internal energy, the Mn-1H+ formation channel becomes dominant. Mn-1H+ ions then fragment nearly exclusively by monomer loss, describing the high abundance of protonated clusters in the mass spectra of amino acid clusters.

See more in PubMed

Yamashita M.; Fenn J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451–4459. 10.1021/j150664a002. DOI

Fenn J. B.; Mann M.; Meng C. K.; Wong S. F.; Whitehouse C. M. Electrospray Ionization–Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70. 10.1002/mas.1280090103. DOI

Rizzo T. R.; Stearns J. A.; Boyarkin O. V. Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions. Int. Rev. Phys. Chem. 2009, 28, 481–515. 10.1080/01442350903069931. DOI

Roithová J.; Gray A.; Andris E.; Jašík J.; Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc. Chem. Res. 2016, 49, 223–230. 10.1021/acs.accounts.5b00489. PubMed DOI

Tiefenthaler L.; Ameixa J.; Martini P.; Albertini S.; Ballauf L.; Zankl M.; Goulart M.; Laimer F.; von Haeften K.; Zappa F.; Scheier P. An Intense Source for Cold Cluster Ions of a Specific Composition. Rev. Sci. Instrum. 2020, 91, 03331510.1063/1.5133112. PubMed DOI

Davies J. A.; Besley N. A.; Yang S.; Ellis A. M. Probing Elusive Cations: Infrared Spectroscopy of Protonated Acetic Acid. J. Phys. Chem. Lett. 2019, 10, 2108–2112. 10.1021/acs.jpclett.9b00767. PubMed DOI

Franke P. R.; Brice J. T.; Moradi C. P.; Schaefer H. F. III; Douberly G. E. Ethyl + O2 in Helium Nanodroplets: Infrared Spectroscopy of the Ethylperoxy Radical. J. Phys. Chem. A 2019, 123, 3558–3568. 10.1021/acs.jpca.9b01867. PubMed DOI

Abdoul-Carime H.; Sanche L. Alteration of Protein Constituents Induced by Low Energy <40 eV Electrons III. The Aliphatic Amino Acids. J. Phys. Chem. B 2004, 108, 457–464. 10.1021/jp030413x. DOI

Arumainayagam C. R.; Lee H.-L.; Nelson R. B.; Haines D. R.; Gunawardane R. P. Low-Energy Electron-Induced Reactions in Condensed Matter. Surf. Sci. Rep. 2010, 65, 1–44. 10.1016/j.surfrep.2009.09.001. DOI

Junk G.; Svec H. The Mass Spectra of the -Amino Acids. J. Am. Chem. Soc. 1963, 85, 839–845. 10.1021/ja00890a001. DOI

Papp P.; Shchukin P.; Kočíšek J.; Matejčík Š. Electron Ionization and Dissociation of Aliphatic Amino Acids. J. Chem. Phys. 2012, 137, 105101.10.1063/1.4749244. PubMed DOI

Poully J.-C.; Vizcaino V.; Schwob L.; Delaunay R.; Kocisek J.; Eden S.; Chesnel J.-Y.; Méry A.; Rangama J.; Adoui L.; et al. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase. ChemPhysChem 2015, 16, 2389–2396. 10.1002/cphc.201500275. PubMed DOI

Denifl S.; Mähr I.; Ferreira da Silva F.; Zappa F.; Märk T. D.; Scheier P. Electron Impact Ionization Studies with the Amino Acid Valine in the Gas Phase and (Hydrated) in Helium Droplets. Eur. Phys. J. D 2009, 51, 73–79. 10.1140/epjd/e2008-00092-4. DOI

Lalanne M. R.; Achazi G.; Reichwald S.; Lindinger A. Association of Amino Acids Embedded in Helium Droplets Detected by Mass Spectrometry. Eur. Phys. J. D 2015, 69, 280.10.1140/epjd/e2015-60245-x. DOI

Weinberger N.; Ralser S.; Renzler M.; Harnisch M.; Kaiser A.; Denifl S.; Böhme D. K.; Scheier P. Ion Formation Upon Electron Collisions with Valine Embedded in Helium Nanodroplets. Eur. Phys. J. D 2016, 70, 91.10.1140/epjd/e2016-60737-1. DOI

Jochims H.-W.; Schwell M.; Chotin J.-L.; Clemino M.; Dulieu F.; Baumgärtel H.; Leach S. Photoion Mass Spectrometry of Five Amino Acids in the 6–22 eV Photon Energy Range. Chem. Phys. 2004, 298, 279–297. 10.1016/j.chemphys.2003.11.035. DOI

Toennies J. P.; Vilesov A. F. Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes. Angew. Chem., Int. Ed. 2004, 43, 2622–2648. 10.1002/anie.200300611. PubMed DOI

Gomez L. F.; Loginov E.; Sliter R.; Vilesov A. F. Sizes of Large He Droplets. J. Chem. Phys. 2011, 135, 154201.10.1063/1.3650235. PubMed DOI

Kramida A.; Ralchenko Yu.,; Reader J.; NIST ASD Team , NIST Atomic Spectra Database (ver. 5.7.1); [Online]. Available: https://physics.nist.gov/asd [2019, November 5]. National Institute of Standards and Technology: Gaithersburg, MD, 2019.

Laimer F.; Kranabetter L.; Tiefenthaler L.; Albertini S.; Zappa F.; Ellis A. M.; Gatchell M.; Scheier P. Highly Charged Droplets of Superfluid Helium. Phys. Rev. Lett. 2019, 123, 165301.10.1103/PhysRevLett.123.165301. PubMed DOI

Mauracher A.; Echt O.; Ellis A. M.; Yang S.; Bohme D. K.; Postler J.; Kaiser A.; Denifl S.; Scheier P. Cold Physics and Chemistry: Collisions, Ionization and Reactions Inside Helium Nanodroplets Close to Zero K. Phys. Rep. 2018, 751, 1–90. 10.1016/j.physrep.2018.05.001. DOI

Tiefenthaler L.; Kočišek J.; Scheier P. Cluster Ion Polymerization of Serine and Tryptophan, the Water Loss Channel. Eur. Phys. J. D 2020, 74, 85.10.1140/epjd/e2020-10014-y. DOI

Klassen J. S.; Kebarle P. Collision-Induced Dissociation Threshold Energies of Protonated Glycine, Glycinamide, and Some Related Small Peptides and Peptide Amino Amides. J. Am. Chem. Soc. 1997, 119, 6552–6563. 10.1021/ja962813m. DOI

Tolmachev A. V.; Vilkov A. N.; Bogdanov B.; PĂsa-Tolić L.; Masselon C. D.; Smith R. D. Collisional Activation of Ions in RF Ion Traps and Ion Guides: The Effective Ion Temperature Treatment. J. Am. Soc. Mass Spectrom. 2004, 15, 1616–1628. 10.1016/j.jasms.2004.07.014. PubMed DOI

Magnera T. F.; David D. E.; Stulik D.; Orth R. G.; Jonkman H. T.; Michl J. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. CollisionInduced Dissociation and Successive Hydration Energies of Gaseous Copper+ with 1-4 Water Molecules. J. Am. Chem. Soc. 1989, 111, 5036–5043. 10.1021/ja00196a003. DOI

Zhao Y.; Truhlar D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 119, 215–241. 10.1007/s00214-007-0401-8. DOI

Grimme S. Semiempirical GGA-Type Density Functional Constructed with a LongRange Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H. et al. Gaussian 16; Revision A.03., Gaussian Inc.: Wallingford CT, 2016.

Breneman C. M.; Wiberg K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11, 361–373. 10.1002/jcc.540110311. DOI

Beranova S.; Cai J.; Wesdemiotis C. Unimolecular Chemistry of Protonated Glycine and Its Neutralized Form in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 9492–9501. 10.1021/ja00142a016. DOI

O’Hair R. A. J.; Broughton P. S.; Styles M. L.; Frink B. T.; Hadad C. M. The Fragmentation Pathways of Protonated Glycine: a Computational Study. J. Am. Soc. Mass Spectrom. 2000, 11, 687–696. 10.1016/S1044-0305(00)00143-4. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...