Attosecond betatron radiation pulse train
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
647121
European Research Council - International
LQ1606
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/15_003/0000449
European Regional Development Fund
PubMed
32934289
PubMed Central
PMC7493897
DOI
10.1038/s41598-020-72053-z
PII: 10.1038/s41598-020-72053-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
High-intensity X-ray sources are essential diagnostic tools for science, technology and medicine. Such X-ray sources can be produced in laser-plasma accelerators, where electrons emit short-wavelength radiation due to their betatron oscillations in the plasma wake of a laser pulse. Contemporary available betatron radiation X-ray sources can deliver a collimated X-ray pulse of duration on the order of several femtoseconds from a source size of the order of several micrometres. In this paper we demonstrate, through particle-in-cell simulations, that the temporal resolution of such a source can be enhanced by an order of magnitude by a spatial modulation of the emitting relativistic electron bunch. The modulation is achieved by the interaction of the that electron bunch with a co-propagating laser beam which results in the generation of a train of equidistant sub-femtosecond X-ray pulses. The distance between the single pulses of a train is tuned by the wavelength of the modulation laser pulse. The modelled experimental setup is achievable with current technologies. Potential applications include stroboscopic sampling of ultrafast fundamental processes.
Zobrazit více v PubMed
Martin MM, Hynes JT. Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science. Oxford: Elsevier; 2004.
Götzfried J, et al. Research towards high-repetition rate laser-driven X-ray sources for imaging applications. Nuclear Instruments and Methods in Physics Research Sect. A Accelerat. Spectrom. Detect. Assoc. Equip. 2018;909:286–289. doi: 10.1016/j.nima.2018.02.110. DOI
Bilderback DH, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources. J. Phys. B Atmos. Mol. Opt. Phys. 2005;38:S773. doi: 10.1088/0953-4075/38/9/022. DOI
McNeil BW, Thompson NR. X-ray free-electron lasers. Nat. Photon. 2010;4:814. doi: 10.1038/nphoton.2010.239. DOI
Esarey E, Schroeder CB, Leemans WP. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229. doi: 10.1103/RevModPhys.81.1229. DOI
Gonsalves AJ, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. doi: 10.1103/PhysRevLett.122.084801. PubMed DOI
Blumenfeld I, et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature. 2007;445:741. doi: 10.1038/nature05538. PubMed DOI
Adli E, et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature. 2018;561:363. doi: 10.1038/s41586-018-0485-4. PubMed DOI PMC
Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 2004;93:135004. doi: 10.1103/PhysRevLett.93.135004. PubMed DOI
Rousse A, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 2004;93:135005. doi: 10.1103/PhysRevLett.93.135005. PubMed DOI
Schnell M, et al. Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator. J. Plasma Phys. 2015;81:20. doi: 10.1017/S0022377815000379. DOI
Fourmaux S, et al. Demonstration of the synchrotron-type spectrum of laser-produced betatron radiation. New J. Phys. 2011;13:033017. doi: 10.1088/1367-2630/13/3/033017. DOI
Rousse A, Phuoc KT, Shah R, Fitour R, Albert F. Scaling of betatron X-ray radiation. Eur. Phys. J. D. 2007;45:391–398. doi: 10.1140/epjd/e2007-00249-7. DOI
Corde S, et al. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 2013;85:1. doi: 10.1103/RevModPhys.85.1. DOI
Cole JM, et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015;5:13244. doi: 10.1038/srep13244. PubMed DOI PMC
Albert F, Thomas AGR. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controll. Fusion. 2016;58:103001. doi: 10.1088/0741-3335/58/10/103001. DOI
Pan K, Zheng C, Cao L, Liu Z, He X. Enhanced betatron radiation in strongly magnetized plasma. Phys. Plasmas. 2016;23:043115. doi: 10.1063/1.4947545. DOI
Zhang Z, et al. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers. Plasma Phys. Controll. Fusion. 2016;58:105009. doi: 10.1088/0741-3335/58/10/105009. DOI
Lee S, Uhm HS, Kang TY, Hur MS, Suk H. Enhanced betatron radiation by a modulating laser pulse in laser wakefield acceleration. Curr. Appl. Phys. 2019;19:464–469. doi: 10.1016/j.cap.2019.01.018. DOI
Andriyash I, d’Humières E, Tikhonchuk V, Balcou P. Betatron emission from relativistic electrons in a high intensity optical lattice. Phys. Rev. Spec. Top. Accel. Beams. 2013;16:100703. doi: 10.1103/PhysRevSTAB.16.100703. DOI
Luís Martins J, Vieira J, Ferri J, Fülöp T. Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum. Sci. Rep. 2019;9:9840. doi: 10.1038/s41598-019-45474-8. PubMed DOI PMC
Németh K, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 2008;100:095002. doi: 10.1103/PhysRevLett.100.095002. PubMed DOI
Cipiccia S, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011;7:867–871. doi: 10.1038/nphys2090. DOI
Curcio A, Giulietti D, Dattoli G, Ferrario M. Resonant interaction between laser and electrons undergoing betatron oscillations in the bubble regime. J. Plasma Phys. 2015;81:20. doi: 10.1017/S0022377815000926. DOI
Huang K, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator. Sci. Rep. 2016;6:27633. doi: 10.1038/srep27633. PubMed DOI PMC
Yu C, et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front. Appl. Phys. Lett. 2018;112:133503. doi: 10.1063/1.5019406. DOI
Palastro J, Kaganovich D, Gordon D. Enhanced betatron X-rays from axially modulated plasma wakefields. Phys. Plasmas. 2015;22:063111. doi: 10.1063/1.4923018. DOI
Lee S, Lee T, Gupta D, Uhm H, Suk H. Enhanced betatron oscillations in laser wakefield acceleration by off-axis laser alignment to a capillary plasma waveguide. Plasma Phys. Controll. Fusion. 2015;57:075002. doi: 10.1088/0741-3335/57/7/075002. DOI
Ferri J, Davoine X. Enhancement of betatron x rays through asymmetric laser wakefield generated in transverse density gradients. Phys. Rev. Accel. Beams. 2018;21:091302. doi: 10.1103/PhysRevAccelBeams.21.091302. DOI
Kozlová M, et al. Hard X-rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X. 2020;10:011061. doi: 10.1103/PhysRevX.10.011061. DOI
Mašlárová, D., Horný, V., Kr
Yu T-P, et al. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets. Appl. Phys. Lett. 2014;105:114101. doi: 10.1063/1.4895928. DOI
Chen L, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 2013;3:1912. doi: 10.1038/srep01912. PubMed DOI PMC
Ferri J, et al. High-brilliance betatron PubMed
Zhao T, et al. High-flux femtosecond X-ray emission from controlled generation of annular electron beams in a laser wakefield accelerator. Phys. Rev. Lett. 2016;117:094801. doi: 10.1103/PhysRevLett.117.094801. PubMed DOI
Horný V, et al. Optical injection dynamics in two laser wakefield acceleration configurations. Plasma Phys. Controll. Fusion. 2018;60:064009. doi: 10.1088/1361-6587/aabd07. DOI
Petrillo V, et al. Dual color X-rays from Thomson or Compton sources. Phys. Rev. Spec. Top. Acce. Beams. 2014;17:020706. doi: 10.1103/PhysRevSTAB.17.020706. DOI
Shevelev M, Aryshev A, Terunuma N, Urakawa J. Generation of a femtosecond electron microbunch train from a photocathode using twofold michelson interferometer. Phys. Rev. Accel. Beams. 2017;20:103401. doi: 10.1103/PhysRevAccelBeams.20.103401. DOI
Dodin I, Fisch NJ. Stochastic extraction of periodic attosecond bunches from relativistic electron beams. Phys. Rev. Lett. 2007;98:234801. doi: 10.1103/PhysRevLett.98.234801. PubMed DOI
Kalmykov SY, Davoine X, Ghebregziabher I, Shadwick BA. Multi-color, femtosecond
Golovin G, et al. Generation of ultrafast electron bunch trains via trapping into multiple periods of plasma wakefields. Phys. Plasmas. 2020;27:033105. doi: 10.1063/1.5141953. DOI
Lécz Z, Andreev A, Konoplev I, Seryi A, Smith J. Trains of electron micro-bunches in plasma wake-field acceleration. Plasma Phys. Controll. Fusion. 2018;60:075012. doi: 10.1088/1361-6587/aac064. DOI
Mauritsson J, et al. Coherent electron scattering captured by an attosecond quantum stroboscope. Phys. Rev. Lett. 2008;100:073003. doi: 10.1103/PhysRevLett.100.073003. PubMed DOI
Baltuška A, et al. Attosecond control of electronic processes by intense light fields. Nature. 2003;421:611–615. doi: 10.1038/nature01414. PubMed DOI
Geddes CGR, et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008;100:215004. doi: 10.1103/PhysRevLett.100.215004. PubMed DOI
Zhang X, Khudik VN, Shvets G. Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime. Phys. Rev. Lett. 2015;114:184801. doi: 10.1103/PhysRevLett.114.184801. PubMed DOI
Shaw JL, et al. Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection. Phys. Rev. Lett. 2017;118:064801. doi: 10.1103/PhysRevLett.118.064801. PubMed DOI
Mahieu B, et al. Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 2018;9:3276. doi: 10.1038/s41467-018-05791-4. PubMed DOI PMC
Li L, Wu Y, Wu J. In-situ analysis of grain rotation and lattice strain within a magnesium polycrystal based on synchrotron polychromatic x-ray diffraction technique:(i) prior to twin. Micron. 2018;111:1–8. doi: 10.1016/j.micron.2018.05.007. PubMed DOI
Wu W, et al. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys. Acta Mater. 2016;121:15–23. doi: 10.1016/j.actamat.2016.08.058. DOI
Mankowsky R, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa PubMed
Buzzi M, Först M, Cavalleri A. Measuring non-equilibrium dynamics in complex solids with ultrashort X-ray pulses. Philos. Trans. R. Soc. A. 2019;377:20170478. doi: 10.1098/rsta.2017.0478. PubMed DOI PMC
Arber T, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controll. Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI
Horný V, et al. Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas. 2017;24:063107. doi: 10.1063/1.4985687. DOI