Attosecond betatron radiation pulse train

. 2020 Sep 15 ; 10 (1) : 15074. [epub] 20200915

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32934289

Grantová podpora
647121 European Research Council - International
LQ1606 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/15_003/0000449 European Regional Development Fund

Odkazy

PubMed 32934289
PubMed Central PMC7493897
DOI 10.1038/s41598-020-72053-z
PII: 10.1038/s41598-020-72053-z
Knihovny.cz E-zdroje

High-intensity X-ray sources are essential diagnostic tools for science, technology and medicine. Such X-ray sources can be produced in laser-plasma accelerators, where electrons emit short-wavelength radiation due to their betatron oscillations in the plasma wake of a laser pulse. Contemporary available betatron radiation X-ray sources can deliver a collimated X-ray pulse of duration on the order of several femtoseconds from a source size of the order of several micrometres. In this paper we demonstrate, through particle-in-cell simulations, that the temporal resolution of such a source can be enhanced by an order of magnitude by a spatial modulation of the emitting relativistic electron bunch. The modulation is achieved by the interaction of the that electron bunch with a co-propagating laser beam which results in the generation of a train of equidistant sub-femtosecond X-ray pulses. The distance between the single pulses of a train is tuned by the wavelength of the modulation laser pulse. The modelled experimental setup is achievable with current technologies. Potential applications include stroboscopic sampling of ultrafast fundamental processes.

Zobrazit více v PubMed

Martin MM, Hynes JT. Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science. Oxford: Elsevier; 2004.

Götzfried J, et al. Research towards high-repetition rate laser-driven X-ray sources for imaging applications. Nuclear Instruments and Methods in Physics Research Sect. A Accelerat. Spectrom. Detect. Assoc. Equip. 2018;909:286–289. doi: 10.1016/j.nima.2018.02.110. DOI

Bilderback DH, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources. J. Phys. B Atmos. Mol. Opt. Phys. 2005;38:S773. doi: 10.1088/0953-4075/38/9/022. DOI

McNeil BW, Thompson NR. X-ray free-electron lasers. Nat. Photon. 2010;4:814. doi: 10.1038/nphoton.2010.239. DOI

Esarey E, Schroeder CB, Leemans WP. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229. doi: 10.1103/RevModPhys.81.1229. DOI

Gonsalves AJ, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. doi: 10.1103/PhysRevLett.122.084801. PubMed DOI

Blumenfeld I, et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature. 2007;445:741. doi: 10.1038/nature05538. PubMed DOI

Adli E, et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature. 2018;561:363. doi: 10.1038/s41586-018-0485-4. PubMed DOI PMC

Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 2004;93:135004. doi: 10.1103/PhysRevLett.93.135004. PubMed DOI

Rousse A, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 2004;93:135005. doi: 10.1103/PhysRevLett.93.135005. PubMed DOI

Schnell M, et al. Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator. J. Plasma Phys. 2015;81:20. doi: 10.1017/S0022377815000379. DOI

Fourmaux S, et al. Demonstration of the synchrotron-type spectrum of laser-produced betatron radiation. New J. Phys. 2011;13:033017. doi: 10.1088/1367-2630/13/3/033017. DOI

Rousse A, Phuoc KT, Shah R, Fitour R, Albert F. Scaling of betatron X-ray radiation. Eur. Phys. J. D. 2007;45:391–398. doi: 10.1140/epjd/e2007-00249-7. DOI

Corde S, et al. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 2013;85:1. doi: 10.1103/RevModPhys.85.1. DOI

Cole JM, et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015;5:13244. doi: 10.1038/srep13244. PubMed DOI PMC

Albert F, Thomas AGR. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controll. Fusion. 2016;58:103001. doi: 10.1088/0741-3335/58/10/103001. DOI

Pan K, Zheng C, Cao L, Liu Z, He X. Enhanced betatron radiation in strongly magnetized plasma. Phys. Plasmas. 2016;23:043115. doi: 10.1063/1.4947545. DOI

Zhang Z, et al. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers. Plasma Phys. Controll. Fusion. 2016;58:105009. doi: 10.1088/0741-3335/58/10/105009. DOI

Lee S, Uhm HS, Kang TY, Hur MS, Suk H. Enhanced betatron radiation by a modulating laser pulse in laser wakefield acceleration. Curr. Appl. Phys. 2019;19:464–469. doi: 10.1016/j.cap.2019.01.018. DOI

Andriyash I, d’Humières E, Tikhonchuk V, Balcou P. Betatron emission from relativistic electrons in a high intensity optical lattice. Phys. Rev. Spec. Top. Accel. Beams. 2013;16:100703. doi: 10.1103/PhysRevSTAB.16.100703. DOI

Luís Martins J, Vieira J, Ferri J, Fülöp T. Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum. Sci. Rep. 2019;9:9840. doi: 10.1038/s41598-019-45474-8. PubMed DOI PMC

Németh K, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 2008;100:095002. doi: 10.1103/PhysRevLett.100.095002. PubMed DOI

Cipiccia S, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011;7:867–871. doi: 10.1038/nphys2090. DOI

Curcio A, Giulietti D, Dattoli G, Ferrario M. Resonant interaction between laser and electrons undergoing betatron oscillations in the bubble regime. J. Plasma Phys. 2015;81:20. doi: 10.1017/S0022377815000926. DOI

Huang K, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator. Sci. Rep. 2016;6:27633. doi: 10.1038/srep27633. PubMed DOI PMC

Yu C, et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front. Appl. Phys. Lett. 2018;112:133503. doi: 10.1063/1.5019406. DOI

Palastro J, Kaganovich D, Gordon D. Enhanced betatron X-rays from axially modulated plasma wakefields. Phys. Plasmas. 2015;22:063111. doi: 10.1063/1.4923018. DOI

Lee S, Lee T, Gupta D, Uhm H, Suk H. Enhanced betatron oscillations in laser wakefield acceleration by off-axis laser alignment to a capillary plasma waveguide. Plasma Phys. Controll. Fusion. 2015;57:075002. doi: 10.1088/0741-3335/57/7/075002. DOI

Ferri J, Davoine X. Enhancement of betatron x rays through asymmetric laser wakefield generated in transverse density gradients. Phys. Rev. Accel. Beams. 2018;21:091302. doi: 10.1103/PhysRevAccelBeams.21.091302. DOI

Kozlová M, et al. Hard X-rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X. 2020;10:011061. doi: 10.1103/PhysRevX.10.011061. DOI

Mašlárová, D., Horný, V., Kr

Yu T-P, et al. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets. Appl. Phys. Lett. 2014;105:114101. doi: 10.1063/1.4895928. DOI

Chen L, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 2013;3:1912. doi: 10.1038/srep01912. PubMed DOI PMC

Ferri J, et al. High-brilliance betatron PubMed

Zhao T, et al. High-flux femtosecond X-ray emission from controlled generation of annular electron beams in a laser wakefield accelerator. Phys. Rev. Lett. 2016;117:094801. doi: 10.1103/PhysRevLett.117.094801. PubMed DOI

Horný V, et al. Optical injection dynamics in two laser wakefield acceleration configurations. Plasma Phys. Controll. Fusion. 2018;60:064009. doi: 10.1088/1361-6587/aabd07. DOI

Petrillo V, et al. Dual color X-rays from Thomson or Compton sources. Phys. Rev. Spec. Top. Acce. Beams. 2014;17:020706. doi: 10.1103/PhysRevSTAB.17.020706. DOI

Shevelev M, Aryshev A, Terunuma N, Urakawa J. Generation of a femtosecond electron microbunch train from a photocathode using twofold michelson interferometer. Phys. Rev. Accel. Beams. 2017;20:103401. doi: 10.1103/PhysRevAccelBeams.20.103401. DOI

Dodin I, Fisch NJ. Stochastic extraction of periodic attosecond bunches from relativistic electron beams. Phys. Rev. Lett. 2007;98:234801. doi: 10.1103/PhysRevLett.98.234801. PubMed DOI

Kalmykov SY, Davoine X, Ghebregziabher I, Shadwick BA. Multi-color, femtosecond

Golovin G, et al. Generation of ultrafast electron bunch trains via trapping into multiple periods of plasma wakefields. Phys. Plasmas. 2020;27:033105. doi: 10.1063/1.5141953. DOI

Lécz Z, Andreev A, Konoplev I, Seryi A, Smith J. Trains of electron micro-bunches in plasma wake-field acceleration. Plasma Phys. Controll. Fusion. 2018;60:075012. doi: 10.1088/1361-6587/aac064. DOI

Mauritsson J, et al. Coherent electron scattering captured by an attosecond quantum stroboscope. Phys. Rev. Lett. 2008;100:073003. doi: 10.1103/PhysRevLett.100.073003. PubMed DOI

Baltuška A, et al. Attosecond control of electronic processes by intense light fields. Nature. 2003;421:611–615. doi: 10.1038/nature01414. PubMed DOI

Geddes CGR, et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008;100:215004. doi: 10.1103/PhysRevLett.100.215004. PubMed DOI

Zhang X, Khudik VN, Shvets G. Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime. Phys. Rev. Lett. 2015;114:184801. doi: 10.1103/PhysRevLett.114.184801. PubMed DOI

Shaw JL, et al. Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection. Phys. Rev. Lett. 2017;118:064801. doi: 10.1103/PhysRevLett.118.064801. PubMed DOI

Mahieu B, et al. Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 2018;9:3276. doi: 10.1038/s41467-018-05791-4. PubMed DOI PMC

Li L, Wu Y, Wu J. In-situ analysis of grain rotation and lattice strain within a magnesium polycrystal based on synchrotron polychromatic x-ray diffraction technique:(i) prior to twin. Micron. 2018;111:1–8. doi: 10.1016/j.micron.2018.05.007. PubMed DOI

Wu W, et al. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys. Acta Mater. 2016;121:15–23. doi: 10.1016/j.actamat.2016.08.058. DOI

Mankowsky R, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa PubMed

Buzzi M, Först M, Cavalleri A. Measuring non-equilibrium dynamics in complex solids with ultrashort X-ray pulses. Philos. Trans. R. Soc. A. 2019;377:20170478. doi: 10.1098/rsta.2017.0478. PubMed DOI PMC

Arber T, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controll. Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI

Horný V, et al. Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas. 2017;24:063107. doi: 10.1063/1.4985687. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...