• This record comes from PubMed

The Impact of Plasma Membrane Lipid Composition on Flagellum-Mediated Adhesion of Enterohemorrhagic Escherichia coli

. 2020 Sep 16 ; 5 (5) : . [epub] 20200916

Language English Country United States Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.

See more in PubMed

Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, Speybroeck N, Cawthorne A, Mathers C, Stein C, Angulo FJ, Devleesschauwer B, World Health Organization Foodborne Disease Burden Epidemiology Reference Group. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 12:e1001923. doi:10.1371/journal.pmed.1001923. PubMed DOI PMC

Kaper JB, Nataro JP, Mobley HLT. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. doi:10.1038/nrmicro818. PubMed DOI

Holden N, Pritchard L, Toth I. 2009. Colonization out with the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria: review article. FEMS Microbiol Rev 33:689–703. doi:10.1111/j.1574-6976.2008.00153.x. PubMed DOI

Bardiau M, Szalo M, Mainil JG. 2010. Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res 41:57. doi:10.1051/vetres/2010029. PubMed DOI PMC

Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41:1340–1351. doi:10.1128/IAI.41.3.1340-1351.1983. PubMed DOI PMC

Nougayrède J-P, Fernandes PJ, Donnenberg MS. 2003. Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5:359–372. doi:10.1046/j.1462-5822.2003.00281.x. PubMed DOI

Wolfson EB, Elvidge J, Tahoun A, Gillespie T, Mantell J, McAteer SP, Rossez Y, Paxton E, Lane F, Shaw DJ, Gill AC, Stevens J, Verkade P, Blocker A, Mahajan A, Gally DL. 13 February 2020. Bacterial flagella disrupt host cell membranes and interact with cytoskeletal components. bioRxiv doi:10.1101/2020.02.12.945204. PubMed DOI PMC

Pizarro-Cerdá J, Cossart P. 2006. Bacterial adhesion and entry into host cells. Cell 124:715–727. doi:10.1016/j.cell.2006.02.012. PubMed DOI

Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. 2009. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592. doi:10.1016/j.chom.2009.05.011. PubMed DOI

Haiko J, Westerlund-Wikström B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2:1242–1267. doi:10.3390/biology2041242. PubMed DOI PMC

Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. 2015. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog 11:e1004483. doi:10.1371/journal.ppat.1004483. PubMed DOI PMC

Erdem AL, Avelino F, Xicohtencatl-Cortes J, Girón JA. 2007. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189:7426–7435. doi:10.1128/JB.00464-07. PubMed DOI PMC

Sourjik V, Wingreen NS. 2012. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268. doi:10.1016/j.ceb.2011.11.008. PubMed DOI PMC

Beatson SA, Minamino T, Pallen MJ. 2006. Variation in bacterial flagellins: from sequence to structure. Trends Microbiol 14:151–155. doi:10.1016/j.tim.2006.02.008. PubMed DOI

Yonekura K, Maki-Yonekura S, Namba K. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–650. doi:10.1038/nature01830. PubMed DOI

O'Brien EJ, Bennett PM. 1972. Structure of straight flagella from a mutant Salmonella. J Mol Biol 70:133–152. doi:10.1016/0022-2836(72)90168-4. PubMed DOI

Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Willats WGT, Toth IK, Holden NJ. 2014. Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants. Environ Microbiol 16:2181–2195. doi:10.1111/1462-2920.12315. PubMed DOI

Horstmann JA, Lunelli M, Cazzola H, Heidemann J, Kühne C, Steffen P, Szefs S, Rossi C, Lokareddy RK, Wang C, Lemaire L, Hughes KT, Uetrecht C, Schlüter H, Grassl GA, Stradal TEB, Rossez Y, Kolbe M, Erhardt M. 2020. Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun 11:2013. doi:10.1038/s41467-020-15738-3. PubMed DOI PMC

Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–572. doi:10.1038/42408. PubMed DOI

Brown DA, London E. 1998. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136. doi:10.1146/annurev.cellbio.14.1.111. PubMed DOI

Mañes S, Del Real G, Martínez-A C. 2003. Pathogens: raft hijackers. Nat Rev Immunol 3:557–568. doi:10.1038/nri1129. PubMed DOI

Rogers TJ, Thorpe CM, Paton AW, Paton JC. 2012. Role of lipid rafts and flagellin in invasion of colonic epithelial cells by Shiga-toxigenic Escherichia coli O113:H21. Infect Immun 80:2858–2867. doi:10.1128/IAI.00336-12. PubMed DOI PMC

Bagam P, Singh DP, Inda ME, Batra S. 2017. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 33:429–455. doi:10.1007/s10565-017-9386-9. PubMed DOI PMC

Lafont F, van der Goot FG. 2005. Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620. doi:10.1111/j.1462-5822.2005.00515.x. PubMed DOI

Parasassi T, De Stasio G, d'Ubaldo A, Gratton E. 1990. Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys J 57:1179–1186. doi:10.1016/S0006-3495(90)82637-0. PubMed DOI PMC

De Vequi-Suplicy CC, Benatti CR, Lamy MT. 2006. Laurdan in fluid bilayers: position and structural sensitivity. J Fluoresc 16:431–439. doi:10.1007/s10895-005-0059-3. PubMed DOI

Lipowsky R, Risselada HJ, Jahn R, Sykes C, Baumgart T, Frolov VA, Dimova R, Lauritsen L, Voth GA, Deserno M, Stamou D, Breuer A, Pucadyil TJ, Jin R, Bassereau P, Kozlov MM, Simon C, Johannes L, Zeno WF, Bashkirov PV, Weikl TR, Stachowiak JC, Grubmüller H. 2018. The 2018 biomembrane curvature and remodeling roadmap. J Phys D Appl Phys 51:343001. doi:10.1088/1361-6463/aacb98. PubMed DOI PMC

Pera H, Kleijn JM, Leermakers FAM. 2012. Interaction of silica nanoparticles with phospholipid membranes. Chem Lett 41:1322–1324. doi:10.1246/cl.2012.1322. DOI

Harris FM, Best KB, Bell JD. 2002. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim Biophys Acta 1565:123–128. doi:10.1016/S0005-2736(02)00514-X. PubMed DOI

Israelachvili JN, Mitchell DJ, Ninham BW. 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525–1568. doi:10.1039/f29767201525. DOI

Marczak A. 2009. Fluorescence anisotropy of membrane fluidity probes in human erythrocytes incubated with anthracyclines and glutaraldehyde. Bioelectrochemistry 74:236–239. doi:10.1016/j.bioelechem.2008.11.004. PubMed DOI

Dickey A, Faller R. 2008. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95:2636–2646. doi:10.1529/biophysj.107.128074. PubMed DOI PMC

Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans EA. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339. doi:10.1016/S0006-3495(00)76295-3. PubMed DOI PMC

Spector A, Mathur S, Kaduce T. 1980. Lipid nutrition and metabolism of cultured mammalian cells. Prog Lipid Res 19:155–186. doi:10.1016/0163-7827(80)90003-X. PubMed DOI

Murthy S, Albright E, Mathur SN, Field FJ. 1988. Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism. J Lipid Res 29:773–780. PubMed

Rossi C, Cazzola H, Holden NJ, Rossez Y. 2019. Bacterial adherence to plant and animal surfaces via adhesin-lipid interactions, p 1–21. Health consequences of microbial interactions with hydrocarbons, oils, and lipids. Springer International Publishing, Cham, Switzerland.

de Almeida RFM, Fedorov A, Prieto M. 2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416. doi:10.1016/S0006-3495(03)74664-5. PubMed DOI PMC

London E, Brown DA. 2000. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195. doi:10.1016/S0304-4157(00)00007-1. PubMed DOI

De Almeida RFM, Loura LMS, Fedorov A, Prieto M. 2005. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120. doi:10.1016/j.jmb.2004.12.026. PubMed DOI

Atuma C, Strugala V, Allen A, Holm L. 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280:G922–G929. doi:10.1152/ajpgi.2001.280.5.G922. PubMed DOI

Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389. doi:10.1128/JCM.43.7.3380-3389.2005. PubMed DOI PMC

Johansson MV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–15069. doi:10.1073/pnas.0803124105. PubMed DOI PMC

Luo T, Mohan K, Iglesias P, Robinson D. 2013. Molecular mechanisms of cellular mechanosensing. Nat Mater 12:1064–1071. doi:10.1038/nmat3772. PubMed DOI PMC

Kumar P, Luo Q, Vickers TJ, Sheikh A, Lewis WG, Fleckenstein JM. 2014. EatA, an immunogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infect Immun 82:500–508. doi:10.1128/IAI.01078-13. PubMed DOI PMC

Furter M, Sellin ME, Hansson GC, Hardt W-D. 2019. Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep 27:2665.e3–2678.e3. doi:10.1016/j.celrep.2019.04.106. PubMed DOI PMC

Menge C. 2020. Molecular biology of Escherichia coli Shiga toxins’ effects on mammalian cells. Toxins (Basel) 12:345. doi:10.3390/toxins12050345. PubMed DOI PMC

Crawford RW, Reeve KE, Gunn JS. 2010. Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 192:2981–2990. doi:10.1128/JB.01620-09. PubMed DOI PMC

Reddy AS, Warshaviak DT, Chachisvilis M. 2012. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim Biophys Acta 1818:2271–2281. doi:10.1016/j.bbamem.2012.05.006. PubMed DOI PMC

Sinensky M. 1974. Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525. doi:10.1073/pnas.71.2.522. PubMed DOI PMC

Ibarguren M, López DJ, Escribá PV. 2014. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta 1838:1518–1528. doi:10.1016/j.bbamem.2013.12.021. PubMed DOI

Farquhar JW, Ahrens EH. 1963. Effects of dietary fats on human erythrocyte fatty acid patterns. J Clin Invest 42:675–685. doi:10.1172/JCI104759. PubMed DOI PMC

Kinsella JE. 1990. Lipids, membrane receptors, and enzymes: effects of dietary fatty acids. JPEN J Parenter Enteral Nutr 14:200S–217S. doi:10.1177/014860719001400511. PubMed DOI

Stubbs CD, Smith AD. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137. doi:10.1016/0304-4157(84)90005-4. PubMed DOI

Nakamura MT, Nara TY. 2004. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu Rev Nutr 24:345–376. doi:10.1146/annurev.nutr.24.121803.063211. PubMed DOI

Carta G, Murru E, Banni S, Manca C. 2017. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol 8:902. doi:10.3389/fphys.2017.00902. PubMed DOI PMC

Abbott SK, Else PL, Atkins TA, Hulbert AJ. 2012. Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta 1818:1309–1317. doi:10.1016/j.bbamem.2012.01.011. PubMed DOI

Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. 2012. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 1:243–258. doi:10.1002/mbo3.28. PubMed DOI PMC

Alessandri JM, Joannie JL, Durand GA. 1993. Polyunsaturated fatty acids as differentiation markers of rat jejunal epithelial cells: a modeling approach. J Nutr Biochem 4:97–104. doi:10.1016/0955-2863(93)90007-J. DOI

Calder PC. 2009. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795. doi:10.1016/j.biochi.2009.01.008. PubMed DOI

Husson MO, Ley D, Portal C, Gottrand M, Hueso T, Desseyn JL, Gottrand F. 2016. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect 73:523–535. doi:10.1016/j.jinf.2016.10.001. PubMed DOI

Barceló-Coblijn G, Murphy EJ. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374. doi:10.1016/j.plipres.2009.07.002. PubMed DOI

Bannenberg G, Serhan CN. 2010. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801:1260–1273. doi:10.1016/j.bbalip.2010.08.002. PubMed DOI PMC

Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio A. 2018. Stress‐induced host membrane remodeling protects from infection by non‐motile bacterial pathogens. EMBO J 37:e98529. doi:10.15252/embj.201798529. PubMed DOI PMC

Belas R. 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:517–527. doi:10.1016/j.tim.2014.05.002. PubMed DOI

Bergman MA, Cummings LA, Barrett SLR, Smith KD, Lara JC, Aderem A, Cookson BT. 2005. CD4+ T cells and Toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73:1350–1356. doi:10.1128/IAI.73.3.1350-1356.2005. PubMed DOI PMC

Eckhard U, Bandukwala H, Mansfield MJ, Marino G, Cheng J, Wallace I, Holyoak T, Charles TC, Austin J, Overall CM, Doxey AC. 2017. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella. Nat Commun 8:521. doi:10.1038/s41467-017-00599-0. PubMed DOI PMC

Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. doi:10.1038/35054089. PubMed DOI

Weinberger A, Tsai FC, Koenderink GH, Schmidt TF, Itri R, Meier W, Schmatko T, Schröder A, Marques C. 2013. Gel-assisted formation of giant unilamellar vesicles. Biophys J 105:154–164. doi:10.1016/j.bpj.2013.05.024. PubMed DOI PMC

Nguyen PJ, Rippa S, Rossez Y, Perrin Y. 2016. Acylcarnitines participate in developmental processes associated to lipid metabolism in plants. Planta 243:1011–1022. doi:10.1007/s00425-016-2465-y. PubMed DOI

Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099. PubMed DOI

Ulmer CZ, Patterson RE, Koelmel JP, Garrett TJ, Yost RA. 2017. A robust lipidomics workflow for mammalian cells, plasma, and tissue using liquid-chromatography high-resolution tandem mass spectrometry, p 91–106. In Bhattacharya SK (ed), Methods in molecular biology 1609. Springer, New York, NY. PubMed PMC

Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. doi:10.1038/nbt.2377. PubMed DOI PMC

Pluskal T, Castillo S, Villar-Briones A, Orešič M. 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395. doi:10.1186/1471-2105-11-395. PubMed DOI PMC

Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, et al. . 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837. doi:10.1038/nbt.3597. PubMed DOI PMC

Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. 2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758. doi:10.1038/nmeth.2551. PubMed DOI PMC

Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, Beecher CWW, Garrett TJ, Yost RA. 2017. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 18:1–11. doi:10.1186/s12859-017-1744-3. PubMed DOI PMC

Hutchins PD, Russell JD, Coon JJ. 2018. LipiDex: an integrated software package for high-confidence lipid identification. Cell Syst 6:621.e5–625.e5. doi:10.1016/j.cels.2018.03.011. PubMed DOI PMC

Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. 2019. CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. J Chem Theory Comput 15:775–786. doi:10.1021/acs.jctc.8b01066. PubMed DOI

Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. 2005. The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290. PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869. DOI

Ryckaert JP, Ciccotti G, Berendsen HJC. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5. DOI

Pang Z, Chong J, Li S, Xia J. 2020. MetaboanalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10:186. doi:10.3390/metabo10050186. PubMed DOI PMC

Mukaka MM. 2012. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71. PubMed PMC

Koynova R, Caffrey M. 1998. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145. doi:10.1016/S0304-4157(98)00006-9. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...