New multimodal stationary phases prepared by Ugi multicomponent approach

. 2020 Nov ; 43 (22) : 4178-4190. [epub] 20201007

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32951329

Grantová podpora
18-02597S Czech Science Foundation

Eight different stationary phases based on two aminopropyl silicas of different brands suitable for multimodal chromatography applications have been prepared by a four-component Ugi reaction. The intention was to synthesize stationary phases significantly differing in their properties hereby demonstrating flexibility of the Ugi synthetic protocol. Diverse functional groups including a nonpolar long aliphatic chain, phenyl moiety, cholic acid scaffold, phenylboronic and monosaccharide units, charged betaine, and arginine moieties were immobilized on a silica surface. The novel sorbents were extensively characterized by elemental analysis, Raman spectroscopy, and chromatography. Considering the anchored chemical structures covalently bonded to the silica surface, reversed-phase, hydrophilic, and ion-exchange separation modes were expected. The chromatographic evaluation was performed directed to map the potential of the individual columns specifically in the mentioned chromatographic modes. The Ugi synthetic protocol has proven to be a simple, feasible, and versatile tool for the synthesis of sorbents of variable properties. The newly prepared stationary phases differed considerably in hydrophobicity and ion-exchange ability. A significant influence of the supporting aminopropyl silica on the final chromatographic behavior was observed. Finally, one practical example confirming applicability of the newly prepared sorbents was demonstrated in separation of cytarabine.

Zobrazit více v PubMed

Snyder LR, Kirkland JJ, Dolan JW. 3rd ed. Introduction to modern liquid chromatography. Hoboken: Wiley; 2010.

Kromidas S. The HPLC expert: possibilities and limitations of modern high performance liquid chromatography. Weinheim: Wiley; 2016.

Qiao LZ, Shi XZ, Xu GW. Recent advances in development and characterization of stationary phases for hydrophilic interaction chromatography. Trac-Trends Anal Chem. 2016;81:23-33.

Jandera P, Janas P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta. 2017;967:12-32.

Hendrickx S, Adams E, Cabooter D. Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices. Bioanalysis. 2015;7:2927-45.

Sakaguchi Y, Miyauchi K, Kang BI, Suzuki T, In: He, C., editor. Methods in enzymology. RNA modification. San Diego: Elsevier Academic Press Inc.; 2015. p. 19-28.

Zhang Q, Yang FQ, Ge LY, Hu YJ, Xia ZN. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J Sep Sci. 2017;40:49-80.

Salas D, Borrull F, Fontanals N, Marce RM. Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. Trac-Trends Anal. Chem. 2017;94:141-9.

Marrubini G, Appelblad P, Maietta M, Papetti A. Hydrophilic interaction chromatography in food matrices analysis: an updated review. Food Chem. 2018;257:53-66.

Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci. 2019;42:130-213.

Qing GY, Yan JY, He XN, Li XL, Liang XM. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trac-Trends Anal. Chem. 2020;124:13.

Sykora D, Rezanka P, Zaruba K, Kral V. Recent advances in mixed-mode chromatographic stationary phases. J Sep Sci. 2019;42:89-129.

Arakawa T. Review on the application of mixed-mode chromatography for separation of structure isoforms. Curr Protein Pept Sci. 2019;20:56-60.

Matos T, Bulow L. Separation of nucleic acids using single-and multimodal chromatography. Curr Protein Pept Sci. 2019;20:49-55.

Cabanne C, Santarelli X. Mixed mode chromatography complex development for large opportunities. Curr Protein Pept Sci. 2019;20:22-7.

Santarelli X, Cabanne C. Mixed mode chromatography: a novel way toward new selectivity. Curr Protein Pept Sci. 2019;20:14-21.

Halan V, Maity S, Bhambure R, Rathore AS. Multimodal chromatography for purification of biotherapeuties-A review. Curr Protein Pept Sci. 2019;20:4-13.

Li MT, Zhang QL, Lin DQ, Yao SJ. Development and application of hydrophobic charge-induction chromatography for bioseparation. J Chromatogr B. 2019;1134:8.

Jandera P, Hajek T. Dual-mode hydrophilic interaction normal phase and reversed phase liquid chromatography of polar compounds on a single column. J Sep Sci. 2020;17.

Meyer VR. Practical high-performance liquid chromatography. 5th ed. Chemically modified silica. Chichester: Wiley; 2010, p. 126-129.

Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography, 3rd Edition. Hoboken: Wiley; 2010, p. 217-227.

Majors RE. Current trends in HPLC column usage-column watch. LC GC Eur. 2012;25:31.

Bell DS. New liquid chromatography columns and accessories for 2019. LC GC Eur. 2019;32:206-14.

Hulme C, Ayaz M, Martinez-Ariza G, Medda F, Shaw A In: Czechtizky, W., Hamley, P., editors. Small molecule medicinal chemistry: strategies and technologies. Hoboken: John Wiley & Sons Inc; 2016. p. 145-87.

Domling A, Ugi I. Multicomponent reactions with isocyanides. Angew Chem-Int Edit. 2000;39:3168-210.

Khoury El GR, A. L, Lowe CR. In: Zanders, E. D., editor. Chemical genomics and proteomics: reviews and protocols. Totowa: Humana Press Inc; 2012. p. 57-74.

Qian JN, El Khoury G, Issa H, Al-Qaoud K, Shihab P, Lowe CR. A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins. J Chromatogr B. 2012;898:15-23.

El Khoury G, Wang Y, Wang D, Jacob SI, Lowe CR. Design, synthesis, and assessment of a de novo affinity adsorbent for the purification of recombinant human erythropoietin. Biotechnol Bioeng. 2013;110:3063-9.

El Khoury G, Lowe CR. A biomimetic protein G affinity adsorbent: an Ugi ligand for immunoglobulins and Fab fragments based on the third IgG-binding domain of protein G. J Mol Recognit. 2013;26:190-200.

Pina AS, Guilherme M, Pereira AS, Fernandes C, Branco RJF, El Khoury G, Lowe CR, Roque ACA. A tailor-made “tag-receptor” affinity pair for the purification of fusion proteins. ChemBioChem. 2014;15:1423-35.

Pina AS, Dias A, Ustok FI, El Khoury G, Fernandes CSM, Branco RJF, Lowe CR, Roque ACA. Mild and cost-effective green fluorescent protein purification employing small synthetic ligands. J Chromatogr A. 2015;1418:83-93.

Chen C, El Khoury G, Lowe CR. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction. J Chromatogr B. 2014;969:171-80.

Jacob SI, Khogeer B, Bampos N, Sheppard T, Schwartz R, Lowe CR. Development and application of synthetic affinity ligands for the purification of ferritin-based influenza antigens. Bioconjugate Chem. 2017;28:1931-43.

Pina AS, Carvalho S, Dias A, Guilherme M, Pereira AS, Caraca LT, Coroadinha AS, Lowe CR, Roque ACA. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins. J Chromatogr A. 2016;1472:55-65.

Batalha IL, Roque ACA. Petasis-Ugi ligands: new affinity tools for the enrichment of phosphorylated peptides. J Chromatogr B. 2016;1031:86-93.

Behar G, Renodon-Corniere A, Mouratou B, Pecorari F. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins. J Chromatogr A. 2016;1441:44-51.

Chen C, El Khoury G, Zhang PQ, Rudd PM, Lowe CR. A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins. J Chromatogr A. 2016;1444:8-20.

Fernandes CSM, Pina AS, Batalha IL, Roque ACA. Magnetic fishing of recombinant green fluorescent proteins and tagged proteins with designed synthetic ligands. Sep Sci Technol. 2017;52:2907-15.

Kruljec N, Bratkovic T. Alternative affinity ligands for immunoglobulins. Bioconjugate Chem. 2017;28:2009-30.

Brahmachary E, Ling FH, Svec F, Frechet JMJ. Chiral recognition: design and preparation of chiral stationary phases using selectors derived from Ugi multicomponent condensation reactions and a combinatorial approach. J Comb Chem. 2003;5:441-50.

Gargano AFG, Lindner W, Lammerhofer M. Phosphopeptidomimetic substance libraries from multicomponent reaction: enantioseparation on quinidine carbamate stationary phase. J Chromatogr A. 2013;1310:56-65.

Gargano AFG, Leek T, Lindner W, Lammerhofer M. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction. J Chromatogr A. 2013;1317:12-21.

Sykora D, Tesarova E, Popl M. Interactions of basic compounds in reversed-phase high-performance liquid chromatography-influence of sorbent character, mobile phase composition, and pH on retention of basic compounds. J Chromatogr A. 1997;758:37-51.

Ibrahim MEA, Liu Y, Lucy CA. A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography. J Chromatogr A. 2012;1260:126-31.

Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, Araki M, Tanaka N. Chromatographic characterization of silica-C-18 packing materials-correlation between a preparation method and retention bahavior of stationary phase. J Chromatogr Sci. 1989;27:721-8.

Marchand DH, Carr PW, McCalley DV, Neue UD, Dolan JW, Snyder LR. Contributions to reversed-phase column selectivity. II. Cation exchange. J Chromatogr A. 2011;1218:7110-29.

Carr PW, Dolan JW, Neue UD, Snyder LR. Contributions to reversed-phase column selectivity. I. Steric interaction. J Chromatogr A. 2011;1218:1724-42.

Neue UD. Stationary phase characterization and method development. J Sep Sci. 2007;30:1611-27.

Snyder LR, Kirkland JJ, Dolan JW Introduction to modern liquid chromatography. Ion-exchange chromatography. Hoboken: Wiley; 2010, p. 349-360.

Pigneux A, Perreau V, Jourdan E, Vey N, Dastugue N, Huguet F, Sotto JJ, Salmi LR, Ifrah N, Reiffers J. Adding lomustine to idarubicin and cytarabine for induction chemotherapy in older patients with acute myeloid leukemia: the BGMT 95 trial results. Haematologica. 2007;92:1327-34.

Donnette M, Solas C, Giocanti M, Venton G, Farnault L, Berda-Haddad Y, Hau LTT, Costello R, Ouafik L, Lacarelle B, Ciccolini J, Fanciullino R. Simultaneous determination of cytosine arabinoside and its metabolite uracil arabinoside in human plasma by LC-MS/MS: application to pharmacokinetics-pharmacogenetics pilot study in AML patients. J Chromatogr B. 2019;1126:8.

Hilhorst MJ, Hendriks G, van Hout MWJ, Sillen H, van de Merbel NC. HPLC-MS/MS method for the determination of cytarabine in human plasma. Bioanalysis. 2011;3:1603-11.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...