Limited effect of radial oxygen loss on ammonia oxidizers in Typha angustifolia root hairs
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32973299
PubMed Central
PMC7518425
DOI
10.1038/s41598-020-72653-9
PII: 10.1038/s41598-020-72653-9
Knihovny.cz E-zdroje
- MeSH
- amoniak metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyslík metabolismus MeSH
- mikrobiota MeSH
- nitrifikace fyziologie MeSH
- orobincovité metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- kyslík MeSH
- RNA ribozomální 16S MeSH
The benefits of plant-microbe interactions have been exploited extensively for nutrient removal. Radial oxygen loss in aquatic macrophytes potentially promotes nitrification and accelerates nitrogen removal through coupled nitrification-denitrification process. Nitrification is likely the limiting activity for an effective nitrogen removal in wetlands. In this work, we have quantified the effect of radial oxygen losses in Typha angustifolia plants in environments of contrasting salinities, including a temporary lagoon, a constructed wetland, and a river estuary. In all sites, radial oxygen diffusion occurred mainly at a narrow band, from 1 to 5 cm from the root tip, and were almost absent at the tip and basal sections of the root (> 5 cm). Root sections with active oxygen diffusion tended to show higher bacterial and archaeal densities in the rhizoplane according to 16S rRNA gene abundance data, except at higher salinities. Archaeal amoA /bacterial amoA gene ratios were highly variable among sites. Archaeal nitrifiers were only favoured over bacteria on the root surface of Typha collected from the constructed wetland. Collectively, radial oxygen loss had little effect on the nitrifying microbial community at the smaller scale (differences according to root-section), and observed differences were more likely related to prevailing physicochemical conditions of the studied environments or to long-term effects of the root microenvironment (root vs sediment comparisons).
Zobrazit více v PubMed
Mitsch WJ, Gosselink JG. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000;35:25–33. doi: 10.1016/S0921-8009(00)00165-8. DOI
Chen Y, Wen Y, Zhou Q, Vymazal J. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment. Water Res. 2014;63:158–167. doi: 10.1016/j.watres.2014.06.015. PubMed DOI
Ibekwe AM, Lyon SR, Leddy M, Jacobson-Meyers M. Impact of plant density and microbial composition on water quality from a free water surface constructed wetland. J. Appl. Microbiol. 2007;102:921–936. PubMed
Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007;380:48–65. doi: 10.1016/j.scitotenv.2006.09.014. PubMed DOI
Shelef O, Gross A, Rachmilevitch S. Role of plants in a constructed wetland: Current and new perspectives. Water (Switzerland) 2013;5:405–419.
Colmer TD. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36. doi: 10.1046/j.1365-3040.2003.00846.x. DOI
Kotula L, Steudle E. Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique. J. Exp. Bot. 2009;60:567–580. doi: 10.1093/jxb/ern300. PubMed DOI PMC
Ahn C, Gillevet PM, Sikaroodi M. Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading. Ecol. Indic. 2007;7:852–863. doi: 10.1016/j.ecolind.2006.10.004. DOI
Truu M, Juhanson J, Truu J. Microbial biomass, activity and community composition in constructed wetlands. Sci. Total Environ. 2009;407:3958–3971. doi: 10.1016/j.scitotenv.2008.11.036. PubMed DOI
García-Lledó A, Ruiz-Rueda O, Sala L, Bañeras L. Nitrogen removal efficiencies in a free water surface constructed wetland in relation to plant coverage. Ecol. Eng. 2011;37:678–684. doi: 10.1016/j.ecoleng.2010.06.034. DOI
Brix H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997;35:11–17. doi: 10.2166/wst.1997.0154. DOI
Wang Q, et al. Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water. 2018;10:678. doi: 10.3390/w10060678. DOI
Lee C, Fletcher TD, Sun G. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009;9:11–22. doi: 10.1002/elsc.200800049. DOI
Jahangir MMR, et al. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: A review. Hydrol. Earth Syst. Sci. Discuss. 2014;11:7615–7657. doi: 10.5194/hessd-11-7615-2014. DOI
Faulwetter JL, et al. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009;35:987–1004. doi: 10.1016/j.ecoleng.2008.12.030. DOI
Wu S, Kuschk P, Brix H, Vymazal J, Dong R. Development of constructed wetlands inperformance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014;57:40–45. doi: 10.1016/j.watres.2014.03.020. PubMed DOI
Zumft WG. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997;61:533–582. doi: 10.1128/.61.4.533-616.1997. PubMed DOI PMC
Risgaard-Petersen N, Jensen K. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol. Ocean. 1997;42:529–537. doi: 10.4319/lo.1997.42.3.0529. DOI
Stottmeister U, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003;22:93–117. doi: 10.1016/j.biotechadv.2003.08.010. PubMed DOI
Wießner A, Kuschk P, Kästner M, Stottmeister U. Abilities of helophyte species to release oxygen into rhizospheres with varying redox conditions in laboratory-scale hydroponic systems. Int. J. Phytoremed. 2002 doi: 10.1080/15226510208500069. DOI
Reddy KR, Patrick WH, Lindau CW. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr. 1989;34:1004–1013. doi: 10.4319/lo.1989.34.6.1004. DOI
Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/AEM.63.12.4704-4712.1997. PubMed DOI PMC
Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 2001;55:485–529. doi: 10.1146/annurev.micro.55.1.485. PubMed DOI
Lehtovirta-Morley LE. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. 2018;365:1–9. doi: 10.1093/femsle/fny058. PubMed DOI
Costa R, et al. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 2006;56:236–249. doi: 10.1111/j.1574-6941.2005.00026.x. PubMed DOI
Stahl DA, et al. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 2015;66:83–101. doi: 10.1146/annurev-micro-092611-150128. PubMed DOI
Pester M, et al. <i>amoA<i>-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of <i>amoA<i> genes from soils of four different geographic regions. Environ. Microbiol. 2012;14:525–539. doi: 10.1111/j.1462-2920.2011.02666.x. PubMed DOI PMC
Bañeras L, Ruiz-Rueda O, López-Flores R, Quintana XD, Hallin S. The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation. Int. Microbiol. 2012;15:89–99. PubMed
Caliz J, et al. Influence of edaphic, climatic, and agronomic factors on the composition and abundance of nitrifying microorganisms in the rhizosphere of commercial olive crops. PLoS ONE. 2015;10:e0125787. doi: 10.1371/journal.pone.0125787. PubMed DOI PMC
Xiao H, Schaefer DA, Yang X. pH drives ammonia oxidizing bacteria rather than archaea thereby stimulate nitrification under Ageratina adenophora colonization. Soil Biol. Biochem. 2017;114:12–19. doi: 10.1016/j.soilbio.2017.06.024. DOI
Thion CE, et al. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 2016;92:265–275. doi: 10.1093/femsec/fiw091. PubMed DOI
Seago JL, Peterson CA, Enstone DE, Scholey CA. Development of the endodermis and hypodermis of Typha glauca Godr. and Typha angustifolia L. roots. Can. J. Bot. Can. Bot. 1999;77:122–134. doi: 10.1139/cjb-77-1-122. DOI
Chappuis E, Gacia E, Ballesteros E. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquat. Bot. 2014;113:72–82. doi: 10.1016/j.aquabot.2013.11.007. DOI
Vymazal J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011;45:61–69. doi: 10.1021/es101403q. PubMed DOI
Puig R, et al. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach. Sci. Total Environ. 2017 doi: 10.1016/j.scitotenv.2016.11.206. PubMed DOI
Hernández-del Amo E, Ramió-Pujol S, Gich F, Trias R, Bañeras L. Changes in the potential activity of nitrite reducers and the microbial community structure after sediment dredging and plant removal in the empuriabrava FWS-CW. Microb. Ecol. 2019 doi: 10.1007/s00248-019-01425-4. PubMed DOI
García-Lledó A, Vilar-Sanz A, Trias R, Hallin S, Bañeras L. Genetic potential for N2O emissions from the sediment of a free water surface constructed wetland. Water Res. 2011;45:5621–5632. doi: 10.1016/j.watres.2011.08.025. PubMed DOI
Du X, Wang J, Jegatheesan V, Shi G. Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Appl. Sci. 2018;8:261. doi: 10.3390/app8020261. DOI
Armstrong W. Aeration in higher plants. Adv. Bot. Res. 1980;7:225–332. doi: 10.1016/S0065-2296(08)60089-0. DOI
Armstrong W, Beckett PM. Internal aeration and development of stela anoxia in submerged roots: A multishelled mathem mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol. 1987;105:221–245. doi: 10.1111/j.1469-8137.1987.tb00860.x. DOI
Armstrong W. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 1971;25:192–197. doi: 10.1111/j.1399-3054.1971.tb01427.x. DOI
Smits AJM, Laan P, Thier RH, van der Velde G. Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat. Aquat. Bot. 1990 doi: 10.1016/0304-3770(90)90095-3. DOI
McDonald MP, Galwey NW, Colmer TD. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 2002 doi: 10.1046/j.0016-8025.2001.00817.x. DOI
Trias R, et al. Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Appl. Environ. Microbiol. 2012;78:318–325. doi: 10.1128/AEM.05904-11. PubMed DOI PMC
Wei B, Yu X, Zhang S, Gu L. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiol. Res. 2011;166:468–474. doi: 10.1016/j.micres.2010.09.001. PubMed DOI
Trias R, et al. Emergent macrophytes act selectively on ammonia-oxidizing Bacteria and Archaea. Appl. Environ. Microbiol. 2012;78:6352–6356. doi: 10.1128/AEM.00919-12. PubMed DOI PMC
Zhou X, et al. Distribution characteristics of ammonia oxidizing microorganisms in rhizosphere sediments of cattail. Ecol. Eng. 2016;88:99–111. doi: 10.1016/j.ecoleng.2015.12.023. DOI
Penton CR, et al. Importance of sub-surface rhizosphere-mediated coupled nitrification–denitrification in a flooded agroecosystem in Hawaii. Soil Biol. Biochem. 2013;57:362–373. doi: 10.1016/j.soilbio.2012.10.018. DOI
Sterngren AE, Hallin S, Bengtson P. Archaeal ammonia oxidizers dominate in numbers, but Bacteria drive gross nitrification in N-amended grassland soil. Front. Microbiol. 2015;6:1350. doi: 10.3389/fmicb.2015.01350. PubMed DOI PMC
Santos JP, et al. Salinity impact on ammonia oxidizers activity and amoA expression in estuarine sediments. Estuar. Coast. Shelf Sci. 2018;211:177–187. doi: 10.1016/j.ecss.2017.09.001. DOI
Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol. Rev. 2009;33:855–869. doi: 10.1111/j.1574-6976.2009.00179.x. PubMed DOI
Bristow L, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl. Acad. Sci. 2016;113:10601–10606. doi: 10.1073/pnas.1600359113. PubMed DOI PMC
Andreote FD, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE. 2012;7:e38600. doi: 10.1371/journal.pone.0038600. PubMed DOI PMC
Miao L, Liu Z. Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. Sci. China Life Sci. 2018;61:753–761. doi: 10.1007/s11427-017-9228-2. PubMed DOI
Yin Z, Bi X, Xu C. Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea. 2018;20:18. PubMed PMC
Dong X, Reddy GB. Ammonia-oxidizing bacterial community and nitrification rates in constructed wetlands treating swine wastewater. Ecol. Eng. 2012;40:189–197. doi: 10.1016/j.ecoleng.2011.12.022. DOI
Nunan N, et al. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl. Environ. Microbiol. 2005;71:6784–6792. doi: 10.1128/AEM.71.11.6784-6792.2005. PubMed DOI PMC
Ligi T, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol. Eng. 2014;72:47–55. doi: 10.1016/j.ecoleng.2013.07.015. DOI
Zhou Z, Meng H, Liu Y, Gu J-D, Li M. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front. Microbiol. 2017;8:2148. doi: 10.3389/fmicb.2017.02148. PubMed DOI PMC
Bodelier P, Libochant JA, Blom C, Laanbroek HJ. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl. Environ. Microbiol. 1996;62:4100–4107. doi: 10.1128/AEM.62.11.4100-4107.1996. PubMed DOI PMC
Pietrangelo L, Bucci A, Maiuro L, Bulgarelli D, Naclerio G. Unraveling the composition of the root-associated bacterial microbiota of Phragmites australis and Typha latifolia. Front. Microbiol. 2018;9:1650. doi: 10.3389/fmicb.2018.01650. PubMed DOI PMC
Ruiz-rueda O, Trias R, Garcia-gil LJ, Bañeras L. Diversity of the nitrite reductase gene nirS in the sediment of a free-water surface constructed wetland. Int. Microbiol. 2007;10:253–260. PubMed
Hernández-del Amo, E. Origin and fate of nitrite in model ecosystems: case studies in groundwater and constructed wetlands. (Universitat de Girona, 2019).
Meeren PV, Vleeschauwer D, Debergh P. Determination of oxygen profiles in agar-based gelled in vitro plant tissue culture media. Plant Cell. Tissue Organ Cult. 2001;65:239–245. doi: 10.1023/A:1010698225362. DOI
Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol. Ecol. 2008;66:331–342. doi: 10.1111/j.1574-6941.2008.00583.x. PubMed DOI
Kemnitz D, Kolb S, Conrad R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 2007;60:442–448. doi: 10.1111/j.1574-6941.2007.00310.x. PubMed DOI
Mardis ER. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 2008;9:387–402. doi: 10.1146/annurev.genom.9.081307.164359. PubMed DOI
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl 1):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Edgar RC. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016 doi: 10.1101/081257. DOI
Schloss PD. Evaluating different approaches that test whether microbial communities have the same structure. ISME J. 2008;2:265–275. doi: 10.1038/ismej.2008.5. PubMed DOI
Dufrene M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997;67:345.
Clarke KR, Warwick RM. Change in marine communities An approach to statistical analysis and interpretation. UK: Natural Environment Research Council (Plymouth Marine Laboratory); 2001.