Functional Connectivity Changes in Obsessive-Compulsive Disorder Correspond to Interference Control and Obsessions Severity
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32973642
PubMed Central
PMC7468468
DOI
10.3389/fneur.2020.00568
Knihovny.cz E-resources
- Keywords
- Stroop test, anxiety, functional connectivity, inhibitory/interference control, obsessions and compulsions, obsessive–compulsive disorder, resting state,
- Publication type
- Journal Article MeSH
Introduction: Deficits in neurocognitive mechanisms such as inhibition control and cognitive flexibility have been suggested to mediate the symptoms in obsessive-compulsive disorder (OCD). These mechanisms are proposedly controlled by the "affective" and "executive" orbitofronto-striato-thalamo-cortical (CSTC) circuits with well-documented morphological and functional alterations in OCD that are associated with OCD symptoms. The precuneus region has been suggested in OCD as another key structure associated with the mechanism of "thought-action fusion." Our study aimed to elucidate the association of the altered functional coupling of the CSTC nodes (and precuneus), the OCD symptoms, and interference control/cognitive flexibility. Methods: In a group of 36 (17 medicated and 19 drug-free) OCD patients and matched healthy volunteers, we tested functional connectivity (FC) within the constituents of the dorsolateral prefrontal cortex "executive" CSTC, the orbitofrontal cortex/anterior cingulate "affective" CSTC, and precuneus. The functional connections showing the strongest effects were subsequently entered as explanatory variables to multiple regression analyses to identify possible associations between observed alterations of functional coupling and cognitive (Stroop test) and clinical measures (obsessions, compulsions, and anxiety level). Results: We observed increased FC (FWE p < 0.05 corr.) between CSTC seeds and regions of the parieto-occipital cortex, and between the precuneus and the angular gyrus and dorsolateral prefrontal cortex. Decreased FC was observed within the CSTC loop (caudate nucleus and thalamus) and between the anterior cingulate cortex and the limbic lobe. Linear regression identified a relationship between the altered functional coupling of thalamus with the right somatomotor parietal cortex and the Stroop color-word score. Similar association of thalamus FC has been identified also for obsessions severity. No association was observed for compulsions and anxiety. Conclusions: Our findings demonstrate altered FC in OCD patients with a prevailing increase in FC originating in CSTC regions toward other cortical areas, and a decrease in FC within the constituents of CSTC loops. Moreover, our results support the role of precuneus in OCD. The association of the cognitive and clinical symptoms with the FC between the thalamus and somatomotor cortex indicates that cognitive flexibility and inhibitory control are strongly linked and both mechanisms might contribute to the symptomatology of OCD.
3rd Faculty of Medicine Charles University Prague Czechia
Institute of Computer Science Czech Academy of Sciences Prague Czechia
See more in PubMed
Stein DJ. Obsessive-compulsive disorder. Lancet. (2002) 360:397–405. 10.1016/S0140-6736(02)09620-4 PubMed DOI
Rankins D, Bradshaw JL, Georgiou-Karistianis N. The semantic simon effect in Tourette's syndrome and obsessive-compulsive disorder. Brain Cogn. (2006) 61:225–34. 10.1016/j.bandc.2006.01.002 PubMed DOI
van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci. (2014) 8:419. 10.3389/fnhum.2014.00419 PubMed DOI PMC
Norman LJ, Taylor SF, Liu Y, Radua J, Chye Y, De Wit SJ, et al. . Error processing and inhibitory control in obsessive-compulsive disorder: a meta-analysis using statistical parametric maps. Biol Psychiatry. (2019) 85:713–25. 10.1016/j.biopsych.2018.11.010 PubMed DOI PMC
Chambers CD, Garavan H, Bellgrove MA. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev. (2009) 33:631–46. 10.1016/j.neubiorev.2008.08.016 PubMed DOI
Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev. (2005) 29:399–419. 10.1016/j.neubiorev.2004.11.006 PubMed DOI
Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. Strategy implementation in obsessive-compulsive disorder and trichotillomania. Psychol Med. (2006) 36:91–7. 10.1017/S0033291705006124 PubMed DOI PMC
Ciesielski KT, Rowland LM, Harris RJ, Kerwin AA, Reeve A, Knight JE. Increased anterior brain activation to correct responses on high-conflict Stroop task in obsessive–compulsive disorder. Clin Neurophysiol. (2011) 122:107–13. 10.1016/j.clinph.2010.05.027 PubMed DOI
Schachar R, Logan GD, Robaey P, Chen S, Ickowicz A, Barr C. Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactivity disorder. J Abnorm Child Psychol. (2007) 35:229–38. 10.1007/s10802-006-9075-2 PubMed DOI
Penadés R, Catalán R, Rubia K, Andrés S, Salamero M, Gastó C. Impaired response inhibition in obsessive compulsive disorder. Eur Psychiatry. (2007) 22:404–10. 10.1016/j.eurpsy.2006.05.001 PubMed DOI
Hartston HJ, Swerdlow NR. Visuospatial priming and stroop performance in patients with obsessive compulsive disorder. Neuropsychology. (1999) 13:447–57. 10.1037/0894-4105.13.3.447 PubMed DOI
Bannon S, Gonsalvez CJ, Croft RJ, Boyce PM. Executive functions in obsessive–compulsive disorder: state or trait deficits? Aust New Zeal J Psychiatry. (2006) 40:1031–8. 10.1080/j.1440-1614.2006.01928.x PubMed DOI
Rosa-Alcázar Á, Olivares-Olivares PJ, Martínez-Esparza IC, Parada-Navas JL, Rosa-Alcázar AI, Olivares-Rodríguez J. Cognitive flexibility and response inhibition in patients with obsessive-compulsive disorder and generalized anxiety disorder. Int J Clin Heal Psychol. (2020) 20:20–8. 10.1016/j.ijchp.2019.07.006 PubMed DOI PMC
Ghisi M, Bottesi G, Sica C, Sanavio E, Freeston MH. Is performance on the Go/Nogo task related to not just right experiences in patients with obsessive compulsive disorder? Cognit Ther Res. (2013) 37:1121–31. 10.1007/s10608-013-9560-1 DOI
McLaughlin NCR, Kirschner J, Foster H, O'Connell C, Rasmussen SA, Greenberg BD. Stop signal reaction time deficits in a lifetime obsessive-compulsive disorder sample. J Int Neuropsychol Soc. (2016) 22:785–9. 10.1017/S1355617716000540 PubMed DOI PMC
Williams MT, Farris SG, Turkheimer E, Pinto A, Ozanick K, Franklin ME, et al. . Myth of the pure obsessional type in obsessive-compulsive disorder. Depress Anxiety. (2011) 28:495–500. 10.1002/da.20820 PubMed DOI PMC
Rolls ET. Glutamate, obsessive–compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks. Pharmacol Biochem Behav. (2012) 100:736–51. 10.1016/j.pbb.2011.06.017 PubMed DOI
Kim C, Johnson NF, Cilles SE, Gold BT. Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. J Neurosci. (2011) 31:4771–9. 10.1523/JNEUROSCI.5923-10.2011 PubMed DOI PMC
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, et al. . Neural and neuronal discoordination in schizophrenia: from ensembles through networks to symptoms. Acta Physiol. (2019) 226:e13282. 10.1111/apha.13282 PubMed DOI
Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex. (2015) 62:89–108. 10.1016/j.cortex.2013.01.016 PubMed DOI
de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM, et al. . Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry. (2014) 171:340–9. 10.1176/appi.ajp.2013.13040574 PubMed DOI
Eng GK, Sim K, Chen S-HA. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev. (2015) 52:233–57. 10.1016/j.neubiorev.2015.03.002 PubMed DOI
Boedhoe PSW, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. . Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry. (2017) 174:60–9. 10.1176/appi.ajp.2016.16020201 PubMed DOI PMC
Gürsel DA, Avram M, Sorg C, Brandl F, Koch K. Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev. (2018) 87:151–60. 10.1016/j.neubiorev.2018.01.016 PubMed DOI
Cocchi L, Harrison BJ, Pujol J, Harding IH, Fornito A, Pantelis C, et al. . Functional alterations of large-scale brain networks related to cognitive control in obsessive-compulsive disorder. Hum Brain Mapp. (2012) 33:1089–106. 10.1002/hbm.21270 PubMed DOI PMC
Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS ONE. (2012) 7:e36356. 10.1371/journal.pone.0036356 PubMed DOI PMC
Jung WH, Kang DH, Kim E, Shin KS, Jang JH, Kwon JS. Abnormal corticostriatal-limbic functional connectivity in obsessive–compulsive disorder during reward processing and resting-state. NeuroImage Clin. (2013) 3:27–38. 10.1016/j.nicl.2013.06.013 PubMed DOI PMC
Hou JM, Zhao M, Zhang W, Song LH, Wu W-, Wang J, et al. . Resting-state functional connectivity abnormalities in patients with obsessive–compulsive disorder and their healthy first-degree relatives. J Psychiatry Neurosci. (2014) 39:304–11. 10.1503/jpn.130220 PubMed DOI PMC
Calzà J, Gürsel DA, Schmitz-Koep B, Bremer B, Reinholz L, Berberich G, et al. Altered Cortico–Striatal Functional Connectivity During Resting State in Obsessive–Compulsive Disorder. Front Psychiatry. (2019) 10:319 10.3389/fpsyt.2019.00319 PubMed DOI PMC
van der Straten AL, Denys D, van Wingen GA. Impact of treatment on resting cerebral blood flow and metabolism in obsessive compulsive disorder: a meta-analysis. Sci Rep. (2017) 7:17464. 10.1038/s41598-017-17593-7 PubMed DOI PMC
Koprivová J, Horácek J, Tintera J, Prasko J, Raszka M, Ibrahim I, et al. . Medial frontal and dorsal cortical morphometric abnormalities are related to obsessive-compulsive disorder. Neurosci Lett. (2009) 464:62–6. 10.1016/j.neulet.2009.08.012 PubMed DOI
Koprivová J, Horáček J, Raszka M, Brunovský M, Praško J. Standardized low-resolution electromagnetic tomography in obsessive-compulsive disorder–a replication study. Neurosci Lett. (2013) 548:185–9. 10.1016/j.neulet.2013.05.015 PubMed DOI
Ursu S, Stenger VA, Shear MK, Jones MR, Carter CS. Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol Sci. (2003) 14:347–53. 10.1111/1467-9280.24411 PubMed DOI
Fitzgerald KD, Welsh RC, Gehring WJ, Abelson JL, Himle JA, Liberzon I, et al. . Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry. (2005) 57:287–94. 10.1016/j.biopsych.2004.10.038 PubMed DOI
Pitman RK. A cybernetic model of obsessive-compulsive psychopathology. Compr. Psychiatry. (1987) 28:334–43. 10.1016/0010-440X(87)90070-8 PubMed DOI
Beucke JC, Sepulcre J, Talukdar T, Linnman C, Zschenderlein K, Endrass T, et al. . Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry. (2013) 70:619. 10.1001/jamapsychiatry.2013.173 PubMed DOI
Yun JY, Jang JH, Jung WH, Shin NY, Kim SN, Hwang JY, et al. . Executive dysfunction in obsessive-compulsive disorder and anterior cingulate-based resting state functional connectivity. Psychiatry Investig. (2017) 14:333–43. 10.4306/pi.2017.14.3.333 PubMed DOI PMC
Rachman S. Obsessions, responsibility and guilt. Behav Res Ther. (1993) 31:149–54. 10.1016/0005-7967(93)90066-4 PubMed DOI
Shafran R, Rachman S. Thought-action fusion: a review. J Behav Ther Exp Psychiatry. (2004) 35:87–107. 10.1016/j.jbtep.2004.04.002 PubMed DOI
Shafran R, Thordarson DS, Rachman S. Thought-action fusion in obsessive compulsive disorder. J Anxiety Disord. (1996) 10:379–91. 10.1016/0887-6185(96)00018-7 PubMed DOI
Amir N, Freshman M, Ramsey B, Neary E, Brigidi B. Thought-action fusion in individuals with OCD symptoms. Behav Res Ther. (2001) 39:765–76. 10.1016/S0005-7967(00)00056-5 PubMed DOI
Meyer JF, Brown TA. Psychometric evaluation of the thought-action fusion scale in a large clinical sample. Assessment. (2013) 20:764–75. 10.1177/1073191112436670 PubMed DOI PMC
van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HBM, et al. . The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain. (2008) 132:853–68. 10.1093/brain/awn267 PubMed DOI
Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, et al. . Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry. (2009) 65:75–83. 10.1016/j.biopsych.2008.06.019 PubMed DOI
Jones R, Bhattacharya J. A role for the precuneus in thought-action fusion: evidence from participants with significant obsessive-compulsive symptoms. NeuroImage Clin. (2014) 4:112–21. 10.1016/j.nicl.2013.11.008 PubMed DOI PMC
Berk G, Ergun BM, Narin Y, Basoglu C, Gonul AS, Ebrinc S, et al. P.1.e.02l The effects of cognitive-behavioural therapy on brain regional cerebral blood flow in obsessive compulsive disorder. Eur Neuropsychopharmacol. (2009) 19:S312 10.1016/S0924-977X(09)70465-1 DOI
Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry. (2009) 195:393–402. 10.1192/bjp.bp.108.055046 PubMed DOI
Rotge JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, et al. . Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology. (2010) 35:686–91. 10.1038/npp.2009.175 PubMed DOI PMC
World Health Organisation International Statistical Classification of Diseases and Related Health Problems 10th Revision. (2011). Available online at: www.who.int (accessed July 1, 2019).
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; (1994). p, 866 Available online at: http://www.psychiatryonline.com/DSMPDF/dsm-iv.pdf
Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The yale-brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry. (1989) 46:1006–11. 10.1001/archpsyc.1989.01810110048007 PubMed DOI
Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. (1959) 32:50–5. 10.1111/j.2044-8341.1959.tb00467.x PubMed DOI
Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. (1935) 18:643–62. 10.1037/h0054651 DOI
Golden CJ, Freshwater SM. Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. editors Charles J Golden. Chicago, IL: Stoelting co; (1978).
Krivá L. Validation of Stroop color and word test on Czech population (Validizace Stroopova testu na české populaci). (2010). Available online at: https://is.cuni.cz/webapps/zzp/detail/86274/?lang=en (accessed June 30, 2019).
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. (2005) 26:839–51. 10.1016/j.neuroimage.2005.02.018 PubMed DOI
Whitfield-Gabrieli S, Nieto-Castanon A. Conn : a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. (2012) 2:125–41. 10.1089/brain.2012.0073 PubMed DOI
Tükel R, Gürvit H, Ertekin BA, Oflaz S, Ertekin E, Baran B, et al. . Neuropsychological function in obsessive-compulsive disorder. Compr Psychiatry. (2012) 53:167–75. 10.1016/j.comppsych.2011.03.007 PubMed DOI
Galderisi S, Mucci A, Catapano F, D'Amato AC, Maj M. Neuropsychological slowness in obsessive-compulsive patients. Is it confined to tests involving the fronto-subcortical systems? Br J Psychiatry. (1995) 167:394–8. 10.1192/bjp.167.3.394 PubMed DOI
Chen Y, Juhás M, Greenshaw AJ, Hu Q, Meng X, Cui H, et al. . Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder. Neurosci Lett. (2016) 623:57–62. 10.1016/j.neulet.2016.04.030 PubMed DOI
Moreira PS, Marques P, Soriano-Mas C, Magalhães R, Sousa N, Soares JM, et al. . The neural correlates of obsessive-compulsive disorder: a multimodal perspective. Transl Psychiatry. (2017) 7:e1224. 10.1038/tp.2017.189 PubMed DOI PMC
Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp. (2014) 35:2852–60. 10.1002/hbm.22371 PubMed DOI PMC
Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, et al. . Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry. (2014) 75:595–605. 10.1016/j.biopsych.2013.10.021 PubMed DOI PMC
Leon T, Garcia MJ, Danke I, Toro P. Resting state in obsessive-compulsive disorder. A review of the literature. Actas Esp Psiquiatr. (2014) 42:250–8. PubMed
Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog Neurobiol. (2004) 72:341–72. 10.1016/j.pneurobio.2004.03.006 PubMed DOI
Fettes P, Schulze L, Downar J. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: Promising therapeutic targets in psychiatric illness. Front Syst Neurosci. (2017) 11:25. 10.3389/fnsys.2017.00025 PubMed DOI PMC
Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R. Compensation of susceptibility-induced bold sensitivity losses in echo-planar fMRI imaging. Neuroimage. (2002) 15:120–35. 10.1006/nimg.2001.0985 PubMed DOI
Du YP, Dalwani M, Wylie K, Claus E, Tregellas JR. Reducing susceptibility artifacts in fMRI using volume-selective z-shim compensation. Magn Reson Med. (2007) 57:396–404. 10.1002/mrm.21150 PubMed DOI
Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am. (2000) 23:563–86. 10.1016/S0193-953X(05)70181-7 PubMed DOI
Rotge JY, Guehl D, Dilharreguy B, Cuny E, Tignol J, Bioulac B, et al. . Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J Psychiatry Neurosci. (2008) 33:405–12. PubMed PMC
Saxena S, Brody AL, Maidment KM, Smith EC, Zohrabi N, Katz E, et al. . Cerebral glucose metabolism in obsessive-compulsive hoarding. Am J Psychiatry. (2004) 161:1038–48. 10.1176/appi.ajp.161.6.1038 PubMed DOI
Zhang Z, Fan Q, Zhu Y, Tan L, Chen Y, Gao R, et al. . Intrinsic functional connectivity alteration of dorsal and rostral anterior cingulate cortex in obsessive-compulsive disorder: a resting fMRI study. Neurosci Lett. (2017) 654:86–92. 10.1016/j.neulet.2017.06.026 PubMed DOI
Page LA, Rubia K, Deeley Q, Daly E, Toal F, Mataix-Cols D, et al. . A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder. Psychiatry Res Neuroimaging. (2009) 174:202–9. 10.1016/j.pscychresns.2009.05.002 PubMed DOI
Zheng ZZ Munhall KG Johnsrude IS . Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production. J Cogn Neurosci. (2010) 22:1770–81. 10.1162/jocn.2009.21324 PubMed DOI PMC
Behroozmand R, Shebek R, Hansen DR, Oya H, Robin DA, Howard MA, et al. . Sensory-motor networks involved in speech production and motor control: an fMRI study. Neuroimage. (2015) 109:418–28. 10.1016/j.neuroimage.2015.01.040 PubMed DOI PMC
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. (2002) 43:111–7. 10.1016/S0168-0102(02)00027-5 PubMed DOI
Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks. (2006) 19:1120–36. 10.1016/j.neunet.2006.03.006 PubMed DOI
Kalanthroff E, Davelaar EJ, Henik A, Goldfarb L, Usher M. Task conflict and proactive control: a computational theory of the stroop task. Psychol Rev. (2017) 125:59–82. 10.1037/rev0000083 PubMed DOI
Sha Z, Edmiston EK, Versace A, Fournier JC, Graur S, Greenberg T, et al. . Functional disruption of cerebello-thalamo-cortical networks in obsessive-compulsive disorder. Biol Psychiatry Cogn Neurosci. Neuroimaging. (2020) 5:438–47. 10.1016/j.bpsc.2019.12.002 PubMed DOI PMC
Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord. (2012) 14:375–410. 10.1111/j.1399-5618.2012.01023.x PubMed DOI