Genes ptz and idi, Coding for Cytokinin Biosynthesis Enzymes, Are Essential for Tumorigenesis and In Planta Growth by P. syringae pv. savastanoi NCPPB 3335

. 2020 ; 11 () : 1294. [epub] 20200821

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32973852

The phytopathogenic bacterium Pseudomonas syringae pv. savastanoi elicits aerial tumors on olive plants and is also able to synthesize large amounts of auxins and cytokinins. The auxin indoleacetic acid was shown to be required for tumorigenesis, but there is only correlational evidence suggesting a role for cytokinins. The model strain NCPPB 3335 contains two plasmid-borne genes coding for cytokinin biosynthesis enzymes: ptz, for an isopentenyl transferase and idi, for an isopentenyl-diphosphate delta-isomerase. Phylogenetic analyses showed that carriage of ptz and idi is not strictly associated with tumorigenic bacteria, that both genes were linked when first acquired by P. syringae, and that a different allele of ptz has been independently acquired by P. syringae pv. savastanoi and closely related bacteria. We generated mutant derivatives of NCPPB 3335 cured of virulence plasmids or with site-specific deletions of genes ptz and/or idi and evaluated their virulence in lignified and micropropagated olive plants. Strains lacking ptz, idi, or both produced tumors with average volumes up to 29 times smaller and reached populations up to two orders of magnitude lower than those induced by strain NCPPB 3335; these phenotypes reverted by complementation with the cloned genes. Trans-zeatin was the most abundant cytokinin in culture filtrates of NCPPB 3335. Deletion of gene ptz abolished biosynthesis of trans-zeatin and dihydrozeatin, whereas a reduced but significant amount of isopentenyladenine was still detected in the medium, suggesting the existence of other genes contributing to cytokinin biosynthesis in P. syringae. Conversely, extracts from strains lacking gene idi contained significantly higher amounts of trans-zeatin than extracts from the wild-type strain but similar amounts of the other cytokinins. This suggests that Idi might promote tumorigenesis by ensuring the biosynthesis of the most active cytokinin forms, their correct balance in planta, or by regulating the expression of other virulence genes. Therefore, gene ptz, but not gene idi, is essential for the biosynthesis of high amounts of cytokinins in culture; however, both ptz and idi are individually essential for the adequate development of tumors on olive plants by Psv NCPPB 3335.

Zobrazit více v PubMed

Agrios G. N. (2005). Plant pathology (San Diego, USA: Elsevier Academic Press; ).

Antoniadi I., Plackova L., Simonovik B., Dolezal K., Turnbull C., Ljung K., et al. (2015). Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell 27 (7), 1955–1967.  10.1105/tpc.15.00176 PubMed DOI PMC

Aragón I. M., Pérez-Martínez I., Moreno-Pérez A., Cerezo M., Ramos C. (2014). New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi . FEMS Microbiol. Lett. 356 (2), 184–192.  10.1111/1574-6968.12413 PubMed DOI

Aragón I. M., Pérez-Mendoza D., Gallegos M.-T., Ramos C. (2015. a). The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. Mol. Plant Pathol. 16 (6), 604–615.  10.1111/mpp.12218 PubMed DOI PMC

Aragón I. M., Pérez-Mendoza D., Moscoso J. A., Faure E., Guery B., Gallegos M. T., et al. (2015. b). Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ. Microbiol. 17 (11), 4332–4351.  10.1111/1462-2920.12856 PubMed DOI

Bardaji L., Pérez-Martínez I., Rodríguez-Moreno L., Rodríguez-Palenzuela P., Sundin G. W., Ramos C., et al. (2011). Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PloS One 6 (10), e25705.  10.1371/journal.pone.0025705 PubMed DOI PMC

Bardaji L., Añorga M., Ruiz-Masó J. A., del Solar G., Murillo J. (2017). Plasmid replicons from Pseudomonas are natural chimeras of functional, exchangeable modules. Front. Microbiol. 8, 190.  10.3389/fmicb.2017.00190 PubMed DOI PMC

Bardaji L., Añorga M., Echeverría M., Ramos C., Murillo J. (2019). The toxic guardians — multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mobile DNA 10 (1), 7.  10.1186/s13100-019-0149-4 PubMed DOI PMC

Bender C. L., Alarcón-Chaidez F., Gross D. C. (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292. 10.1128/MMBR.63.2.266-292.1999 PubMed DOI PMC

Caballo-Ponce E., Murillo J., Martínez-Gil M., Moreno-Pérez A., Pintado A., Ramos C. (2017. a). Knots untie: molecular determinants involved in knot formation induced by Pseudomonas savastanoi in woody hosts. Front. Plant Sci. 8, 1089.  10.3389/fpls.2017.01089 PubMed DOI PMC

Caballo-Ponce E., van Dillewijn P., Wittich R. M., Ramos C. (2017. b). WHOP, a genomic region associated with woody hosts in the Pseudomonas syringae complex contributes to the virulence and fitness of Pseudomonas savastanoi pv. savastanoi in olive plants. Mol. Plant-Microbe Interact. 30 (2), 113–126.  10.1094/mpmi-11-16-0233-r PubMed DOI

Caponero A., Contesini A. M., Iacobellis N. S. (1995). Population diversity of Pseudomonas syringae subsp. savastanoi on olive and oleander. Plant Pathol. 44 (5), 848–855.  10.1111/j.1365-3059.1995.tb02744.x DOI

Carver T., Berriman M., Tivey A., Patel C., Bohme U., Barrell B. G., et al. (2008). Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24 (23), 2672–2676. 10.1093/bioinformatics/btn529 PubMed DOI PMC

Castañeda-Ojeda M. P., López-Solanilla E., Ramos C. (2017. a). Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family. Mol. Plant Pathol. 18 (5), 625–634.  10.1111/mpp.12420 PubMed DOI PMC

Castañeda-Ojeda M. P., Moreno-Pérez A., Ramos C., López-Solanilla E. (2017. b). Suppression of plant immune responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III effector tyrosine phosphatases HopAO1 and HopAO2. Front. Plant Sci. 8, 680.  10.3389/fpls.2017.00680 PubMed DOI PMC

Choi K. H., Kumar A., Schweizer H. P. (2006). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397.  10.1016/j.mimet.2005.06.001 PubMed DOI

Chojnacki S., Cowley A., Lee J., Foix A., Lopez R. (2017). Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res. 45 (W1), W550–w553.  10.1093/nar/gkx273 PubMed DOI PMC

Cinelli T., Marchi G., Cimmino A., Marongiu R., Evidente A., Fiori M. (2014). Heterogeneity of Pseudomonas savastanoi populations infecting Myrtus communis in Sardinia (Italy). Plant Pathol. 63 (2), 277–289.  10.1111/ppa.12096 DOI

Comai L., Kosuge T. (1980). Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi . J. Bacteriol. 143, 950–957. 10.1128/JB.143.2.950-957.1980 PubMed DOI PMC

Corpet F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16 (22), 10881–10890. 10.1093/nar/16.22.10881 PubMed DOI PMC

Cunnac S., Lindeberg M., Collmer A. (2009). Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12 (1), 53–60.  10.1016/j.mib.2008.12.003 PubMed DOI

Denancé N., Sánchez-Vallet A., Goffner D., Molina A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4, 155.  10.3389/fpls.2013.00155 PubMed DOI PMC

Dillon M. M., Almeida R. N. D., Laflamme B., Martel A., Weir B. S., Desveaux D., et al. (2019. a). Molecular evolution of Pseudomonas syringae type III secreted effector proteins. Front. Plant Sci. 10, 418.  10.3389/fpls.2019.00418 PubMed DOI PMC

Dillon M. M., Thakur S., Almeida R. N. D., Wang P. W., Weir B. S., Guttman D. S. (2019. b). Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. 20 (1), 3.  10.1186/s13059-018-1606-y PubMed DOI PMC

Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 (1-2), 21–29.  10.1016/S0021-9673(02)00024-9 PubMed DOI

Driver J. A., Kuniyuki A. H. (1984). In vitro propagation of Paradox walnut rootstock. HortScience 19 (4), 507–509.

Evidente A., Surico G., Iacobellis N. S., Randazzo G. (1986). 1′-methyl-zeatin, an additional cytokinin from Pseudomonas syringae pv. savastanoi . Phytochemistry 25 (2), 525–526.  10.1016/S0031-9422(00)85515-6 DOI

Flores M., Brom S., Stepkowski T., Girard M. L., Dávila G., Romero D., et al. (1993). Gene amplification in Rhizobium: identification and in vivo cloning of discrete amplifiable DNA regions (amplicons) from Rhizobium leguminosarum biovar phaseoli . Proc. Natl. Acad. Sci. 90, 4932–4936.  10.1073/pnas.90.11.4932 PubMed DOI PMC

Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P. A. D. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49, 469–478.  10.1099/00207713-49-2-469 PubMed DOI

Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., et al. (1998). Auxin production is a common feature of most pathovars of Pseudomonas syringae . Mol. Plant-Microbe Interact. 11, 156–162.  10.1094/MPMI.1998.11.2.156 PubMed DOI

Gomila M., Busquets A., Mulet M., García-Valdés E., Lalucat J. (2017). Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Front. Microbiol. 8, 2422.  10.3389/fmicb.2017.02422 PubMed DOI PMC

Goto M. (1983). Pseudomonas syringae pv. photiniae pv. nov., the causal agent of bacterial leaf spot of Photinia glabra Maxim. Ann. Phytopathol. Soc. Japan 49 (4), 457–462.  10.3186/jjphytopath.49.457 DOI

Holmes D. S., Quigley M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114 (1), 193–197. 10.1016/0003-2697(81)90473-5 PubMed DOI

Hosni T., Moretti C., Devescovi G., Suarez-Moreno Z. R., Fatmi M. B., Guarnaccia C., et al. (2011). Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J. 5 (12), 1857–1870.  10.1038/ismej.2011.65 PubMed DOI PMC

Howden A. J. M., Rico A., Mentlak T., Miguet L., Preston G. M. (2009). Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. Mol. Plant Pathol. 10 (6), 857–865.  10.1111/j.1364-3703.2009.00595.x PubMed DOI PMC

Hubbard T. J., Aken B. L., Ayling S., Ballester B., Beal K., Bragin E., et al. (2008). Ensembl 2009. Nucleic Acids Res. 37, D690 – D697. 10.1093/nar/gkn828 PubMed DOI PMC

Huot B., Yao J., Montgomery B. L., He S. Y. (2014). Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7 (8), 1267–1287.  10.1093/mp/ssu049 PubMed DOI PMC

Hwang H.-H., Yang F.-J., Cheng T.-F., Chen Y.-C., Lee Y.-L., Tsai Y.-L., et al. (2013). The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens . Phytopathology 103 (9), 888–899.  10.1094/phyto-01-13-0020-r PubMed DOI

Iacobellis N. S., Evidente A., Surico G., Sisto A., Gammaldi G. (1990). Production of phytohormones by Pseudomonas amygdali and their role in the hyperplastic bacterial canker of almond. J. Phytopathol. 129 (3), 177–186.  10.1111/j.1439-0434.1990.tb04583.x DOI

Iacobellis N. S., Sisto A., Surico G., Evidente A., DiMaio E. (1994). Pathogenicity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. J. Phytopathol. 140, 238–248.  10.1111/j.1439-0434.1994.tb04813.x DOI

Iacobellis N. S., Caponero A., Evidente A. (1998). Characterization of Pseudomonas syringae ssp. savastanoi strains isolated from ash. Plant Pathol. 47 (1), 73–83.  10.1046/j.1365-3059.1998.00202.x DOI

Jackson R. W., Athanassopoulos E., Tsiamis G., Mansfield J. W., Sesma A., Arnold D. L., et al. (1999). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc. Natl. Acad. Sci. 96, 10875–10880.  10.1073/pnas.96.19.10875 PubMed DOI PMC

Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.  10.1093/molbev/msw054 PubMed DOI PMC

Lamichhane J. R., Varvaro L., Parisi L., Audergon J.-M., Morris C. E. (2014). “Disease and frost damage of woody plants caused by Pseudomonas syringae: seeing the forest for the trees,” in Advances in Agronomy. Ed. Sparks D. L. (San Diego, CA: Academic Press; ), 235–295.

Lamichhane J. R., Messéan A., Morris C. E. (2015). Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J. Gen. Plant Pathol. 81 (5), 331–350.  10.1007/s10327-015-0605-z DOI

Ma K.-W., Ma W. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 91 (6), 713–725.  10.1007/s11103-016-0452-0 PubMed DOI PMC

MacDonald E. M. S., Powell G. K., Regier D. A., Glass N. L., Roberto F., Kosuge T., et al. (1986). Secretion of zeatin, ribosylzeatin, and ribosyl-1’’-methylzeatin by Pseudomonas savastanoi: plasmid-coded cytokinin biosynthesis. Plant Physiol. 82 (3), 742–747. 10.1104/pp.82.3.742 PubMed DOI PMC

Marchi G., Cinelli T., Surico G. (2011). “A review on Pseudomonas savastanoi genetic traits involved in disease development and in symptom induction,” in Olive Diseases and Disorders. Eds. Schena L., Agosteo G. E., Cacciola S. O. (Kerala, India: Transworld Research Network; ), 117–141.

Matas I. M., Lambertsen L., Rodríguez-Moreno L., Ramos C. (2012). Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. New Phytol. 196 (4), 1182–1196.  10.1111/j.1469-8137.2012.04357.x PubMed DOI

Matas I. M., Castañeda-Ojeda M. P., Aragón I. M., Antúnez-Lamas M., Murillo J., Rodríguez-Palenzuela P., et al. (2014). Translocation and functional analysis of Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system effectors reveals two novel effector families of the Pseudomonas syringae complex. Mol. Plant-Microbe Interact. 27 (5), 424–436.  10.1094/mpmi-07-13-0206-r PubMed DOI

McClerklin S. A., Lee S. G., Harper C. P., Nwumeh R., Jez J. M., Kunkel B. N. (2018). Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PloS Pathog. 14 (1), e1006811.  10.1371/journal.ppat.1006811 PubMed DOI PMC

Miller J. H. (1992). A short course in bacterial genetics – A laboratory manual and handbook for Escherichia coli and related bacteria (Plainview, NY: Cold Spring Harbor Laboratory Press; ).

Moreno-Pérez A., Pintado A., Murillo J., Caballo-Ponce E., Tegli S., Moretti C., et al. (2020). Host range determinants of Pseudomonas savastanoi pathovars of woody hosts revealed by comparative genomics and cross-pathogenicity tests. Front. Plant Sci. 11, 973.  10.3389/fpls.2020.00973 PubMed DOI PMC

Moretti C., Ferrante P., Hosni T., Valentini F., D’Onghia A., Fatmi M. B., et al. (2008). “Characterization of Pseudomonas savastanoi pv. savastanoi strains collected from olive trees in different countries,” in Pseudomonas syringae Pathovars and Related Pathogens–Identification, Epidemiology and Genomics. Eds. Fatmi M., Collmer A., Iacobellis N. S., Mansfield J. W., Murillo J., Schaad N. W., Ullrich M. S. (Dordrecht: Springer; ), 321–329.

Moretti C., Trabalza S., Granieri L., Caballo-Ponce E., Devescovi G., Del Pino A. M., et al. (2019). A Na+/Ca2+ exchanger of the olive pathogen Pseudomonas savastanoi pv. savastanoi is critical for its virulence. Mol. Plant Pathol. 20 (5), 716–730.  10.1111/mpp.12787 PubMed DOI PMC

Morris R. O., Jameson P. E., Laloue M., Morris J. W. (1991). Rapid identification of cytokinins by an immunological method. Plant Physiol. 95 (4), 1156–1161.  10.1104/pp.95.4.1156 PubMed DOI PMC

Ogimi C., Higuchi H., Takikawa Y. (1988. a). Bacterial gall disease of urajiroenoki (Trema orientalis Blume) caused by Pseudomonas syringae pv. tremae pv. nov. J. Japanese Forest. Soc. 70 (10), 441–446.  10.11519/jjfs1953.70.10_441 DOI

Ogimi C., Higuchi H., Takikawa Y. (1988. b). Bacterial gall disease of kakuremino (Dendropanax trifidus Mak.) caused by Pseudomonas syringae pv. dendropanacis pv. nov. Ann. Phytopathol. Soc. Japan 54 (3), 296–302.  10.3186/jjphytopath.54.296 DOI

Ogimi C., Kubo Y., Higuchi H., Takikawa Y. (1990). Bacterial gall diseases of himeyuzuriha (Daphniphyllum teijsmanni Z.) caused by Pseudomonas syringae pv. daphniphylli pv. nov. J. Japanese Forest. Soc. 72 (1), 17–22.  10.11519/jjfs1953.72.1_17 DOI

Ogimi C., Kawano C., Higuchi H., Takikawa Y. (1992). Bacterial gall disease of sharinbai (Rhaphiolepis umbellata) caused by Pseudomonas syringae pv. rhaphiolepidis pv. nov. J. Japanese Forest. Soc. 74 (4), 308–313.  10.11519/jjfs1953.74.4_308 DOI

Ogimi C. (1977). Studies on bacterial gall of chinaberry (Melia azedarach Lin.), caused by Pseudomonas meliae n. sp. Bull. Coll. Agric. Univ. Ryukyus 24, 497–556.

Penyalver R., Garcia A., Ferrer A., Bertolini E., Quesada J. M., Salcedo C. I., et al. (2006). Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. Phytopathology 96 (3), 313–319.  10.1094/phyto-96-0313 PubMed DOI

Pérez-Martínez I., Rodríguez-Moreno L., Matas I. M., Ramos C. (2007). Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Res. Microbiol. 158 (1), 60–69.  10.1016/j.resmic.2006.09.008 PubMed DOI

Pérez-Martínez I., Zhao Y., Murillo J., Sundin G. W., Ramos C. (2008). Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. J. Bacteriol. 190, 625–635. 10.1128/JB.01067-07 PubMed DOI PMC

Pérez-Martínez I., Rodríguez-Moreno L., Lambertsen L., Matas I. M., Murillo J., Tegli S., et al. (2010). Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). Appl. Environ. Microbiol. 76 (11), 3611–3619.  10.1128/aem.00133-10 PubMed DOI PMC

Powell G. K., Morris R. O. (1986). Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res. 14 (6), 2555–2565. 10.1093/nar/14.6.2555 PubMed DOI PMC

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/.

Ramos C., Matas I. M., Bardaji L., Aragón I. M., Murillo J. (2012). Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol. Plant Pathol. 13 (9), 998–1009.  10.1111/j.1364-3703.2012.00816.x PubMed DOI PMC

Roberto F., Kosuge T. (1987). “Phytohormone metabolism in Pseudomonas syringae subsp. savastanoi,” in Molecular Biology of Plant Growth Control. Eds. Fox E. W., Jacobs M. (NY: Alan R. Liss; ), 371–380.

Rodríguez-Moreno L., Barceló-Muñoz A., Ramos C. (2008). In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants. Phytopathology 98 (7), 815–822.  10.1094/PHYTO-98-7-0815 PubMed DOI

Rodríguez-Moreno L., Jiménez A. J., Ramos C. (2009). Endopathogenic lifestyle of Pseudomonas savastanoi pv. savastanoi in olive knots. Microb. Biotechnol. 2 (4), 476–488.  10.1111/j.1751-7915.2009.00101.x PubMed DOI PMC

Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 (1), 431–449.  10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Sakakibara H. (2010). “Cytokinin biosynthesis and metabolism,” in Plant Hormones: Biosynthesis, Signal Transduction, Action!. Ed. Davies P. J. (Dordrecht: Springer Netherlands; ), 95–114.

Sambrook J., Fritsch E. F., Maniatis T. (1989). Molecular Cloning: a Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; ).

Schiff S., Tani C., Cimmino A., Mandala G., Cinelli T., Evidente A., et al. (2019). The colonization processes of Myrtus communis by strains of Pseudomonas savastanoi with a differential ability to produce phytohormones. Plant Pathol. 68 (6), 1109–1119.  10.1111/ppa.13021 DOI

Sesma A., Sundin G. W., Murillo J. (2000). Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae . Microbiology 146, 2375–2384.  10.1099/00221287-146-10-2375 PubMed DOI

Shidore T., Triplett L. R. (2017). Toxin-antitoxin systems: implications for plant disease. Annu. Rev. Phytopathol. 55 (1), 161–179.  10.1146/annurev-phyto-080516-035559 PubMed DOI

Silverstone S. E., Gilchrist D. G., Bostock R. M., Kosuge T. (1993). The 73-kb pIAA plasmid increases competitive fitness of Pseudomonas syringae subspecies savastanoi in oleander. Can. J. Microbiol. 39, 659–664.  10.1139/m93-095 PubMed DOI

Sisto A., Cipriani M. G., Morea M. (2004). Knot formation caused by Pseudomonas syringae subsp. savastanoi on olive plants is hrp-dependent. Phytopathology 94 (5), 484–489.  10.1094/phyto.2004.94.5.484 PubMed DOI

Solovyev V., Salamov A. (2011). “Automatic annotation of microbial genomes and metagenomic sequences,” in Metagenomics and its applications in agriculture, biomedicine and environmental studies. Ed. Li R. W. (Hauppauge, NY: Nova Science Publishers; ), 61–78.

Spallek T., Gan P., Kadota Y., Shirasu K. (2018). Same tune, different song—cytokinins as virulence factors in plant–pathogen interactions? Curr. Opin. Plant Biol. 44, 82–87.  10.1016/j.pbi.2018.03.002 PubMed DOI

Sundin G. W. (2007). Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu. Rev. Phytopathol. 45, 129–151.  10.1146/annurev.phyto.45.062806.094317 PubMed DOI

Surico G., Sparapano L., Lerario P., Durbin R. D., Iacobellis N. (1975). Cytokinin-like activity in extracts from culture filtrates of Pseudomonas savastanoi . Experientia 31 (8), 929–930.  10.1007/BF02358857 DOI

Surico G., Evidente A., Iacobellis N. S., Randazzo G. (1985. a). A cytokinin from the culture filtrate of Pseudomonas syringae pv. savastanoi . Phytochemistry 24 (7), 1499–1502.  10.1016/S0031-9422(00)81053-5 DOI

Surico G., Iacobellis N. S., Sisto S. (1985. b). Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi . Physiol. Plant Pathol. 26, 309–320.  10.1016/0048-4059(85)90006-2 DOI

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Res. 40 (15), e115.  10.1093/nar/gks596 PubMed DOI PMC

Vivian A., Murillo J., Jackson R. W. (2001). The role of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147 (Pt 4), 763–780.  10.1099/00221287-147-4-763 PubMed DOI

Yamada T., Palm C. J., Brooks B., Kosuge T. (1985). Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci. 82, 6522–6526.  10.1073/pnas.82.19.6522 PubMed DOI PMC

Young J. M. (2010). Taxonomy of Pseudomonas syringae . J. Plant Pathol. 92 (1), S5–S14. 10.4454/jpp.v92i1sup.2501 DOI

Zhou C., Yang Y., Jong A. Y. (1990). Miniprep in ten minutes. BioTechniques 8, 172–173. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...