Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on MIR300 Antiproliferative and PP2A-Activating Functions

. 2020 Jul ; 1 (1) : 48-67.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32974613

Grantová podpora
R01 CA163800 NCI NIH HHS - United States

Odkazy

PubMed 32974613
PubMed Central PMC7510943
DOI 10.1158/0008-5472.bcd-19-0039
PII: 0008-5472.BCD-19-0039
Knihovny.cz E-zdroje

Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.

Center for Advanced Fetal Care University University of Maryland School of Medicine Baltimore Maryland

Department of Biochemistry and Molecular Biology University of Maryland School of Medicine Baltimore Maryland

Department of Haematology Hammersmith Hospital Imperial College London London United Kingdom

Department of Health Sciences School of Health and Human Services National University San Diego California

Department of Hematology Aarhus University Hospital Aarhus Denmark

Department of Hematology and Cellular Therapy Laboratory Hôpital Maisonneuve Rosemont University of Montreal Montreal Quebec Canada

Department of Internal Medicine The Ohio State University Comprehensive Cancer Center Columbus Ohio

Department of Medicine and Moores Cancer Center University of California San Diego La Jolla California

Department of Medicine University of Maryland School of Medicine Baltimore Maryland

Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore Maryland

Department of Molecular Virology Immunology and Medical Genetics The Ohio State University Comprehensive Cancer Center Columbus Ohio

Division of Cancer Studies Rayne Institute King's College London London United Kingdom

Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute University of Utah Salt Lake City Utah

Division of Hematology and Unit of Medical Oncology A O U Policlinico Vittorio Emanuele University of Catania Catania Italy

Division of Hematopoietic Stem Cell and Leukemia Research City of Hope National Medical Center Duarte California

Hematology and Clinical Research Unit San Gerardo Hospital Monza Italy

Institute of Hematology and Blood Transfusion University of Prague Prague Czech Republic

Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine Baltimore Maryland

Sidney Kimmel Cancer Center Thomas Jefferson University Philadelphia Pennsylvania

Komentář v

PubMed

Zobrazit více v PubMed

Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 2017;129:1595–606. PubMed

Radich JP, Deininger M, Abboud CN, Altman JK, Berman E, Bhatia R, et al.  Chronic myeloid leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2018;16:1108–35. PubMed

Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011;121:396–409. PubMed PMC

Yong AS, Keyvanfar K, Hensel N, Eniafe R, Savani BN, Berg M, et al.  Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood 2009;113:875–82. PubMed PMC

Shah M, Bhatia R. Preservation of quiescent chronic myelogenous leukemia stem cells by the bone marrow microenvironment. Adv Exp Med Biol 2018;1100:97–110. PubMed

Carlsten M, Jaras M. Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological opportunities to bolster the endogenous NK cells. Front Immunol 2019;10:2357. PubMed PMC

Ruvolo PP. The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin 2016;6:87–99. PubMed PMC

Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, et al.  The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005;8:355–68. PubMed

Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, et al.  PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013;123:4144–57. PubMed PMC

Agarwal A, MacKenzie RJ, Pippa R, Eide CA, Oddo J, Tyner JW, et al.  Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin Cancer Res 2014;20:2092–103. PubMed PMC

Perrotti D, Agarwal A, Lucas CM, Narla G, Neviani P, Odero MD, et al.  Comment on “PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL human leukemia”. Sci Transl Med 2019;11:eaau0416. PubMed PMC

Lai D, Chen M, Su J, Liu X, Rothe K, Hu K, et al.  PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL(+) human leukemia. Sci Transl Med 2018;10:eaan8735. PubMed

Krause DS, Scadden DT. A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica 2015;100:1376–87. PubMed PMC

Cheloni G, Poteti M, Bono S, Masala E, Mazure NM, Rovida E, et al.  The leukemic stem cell niche: adaptation to “Hypoxia” versus oncogene addiction. Stem Cells Int 2017;2017:4979474. PubMed PMC

Saultz JN, Freud AG, Mundy-Bosse BL. MicroRNA regulation of natural killer cell development and function in leukemia. Mol Immunol 2019;115:12–20. PubMed

Ruvolo PP. The interplay between PP2A and microRNAs in leukemia. Front Oncol 2015;5:43. PubMed PMC

Roden C, Lu J. MicroRNAs in control of stem cells in normal and malignant hematopoiesis. Curr Stem Cell Rep 2016;2:183–96. PubMed PMC

Zhang B, Nguyen LXT, Li L, Zhao D, Kumar B, Wu H, et al.  Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 2018;24:450–62. PubMed PMC

Zhang JQ, Chen S, Gu JN, Zhu Y, Zhan Q, Cheng DF, et al.  MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J Cell Biochem 2018;119:1027–40. PubMed

Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G, et al.  Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 2013;122:3034–44. PubMed PMC

Jena N, Deng M, Sicinska E, Sicinski P, Daley GQ. Critical role for cyclin D2 in BCR/ABL-induced proliferation of hematopoietic cells. Cancer Res 2002;62:535–41. PubMed

Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, et al.  CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 2015;16:302–13. PubMed PMC

Moradi S, Sharifi-Zarchi A, Ahmadi A, Mollamohammadi S, Stubenvoll A, Gunther S, et al.  Small RNA sequencing reveals Dlk1-Dio3 locus-embedded MicroRNAs as major drivers of ground-state pluripotency. Stem Cell Reports 2017;9:2081–96. PubMed PMC

Desplat V, Faucher JL, Mahon FX, Dello Sbarba P, Praloran V, Ivanovic Z. Hypoxia modifies proliferation and differentiation of CD34(+) CML cells. Stem Cells 2002;20:347–54. PubMed

Guerzoni C, Bardini M, Mariani SA, Ferrari-Amorotti G, Neviani P, Panno ML, et al.  Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells. Blood 2006;107:4080–9. PubMed PMC

Hayashi Y, Hirai H, Kamio N, Yao H, Yoshioka S, Miura Y, et al.  C/EBPbeta promotes BCR-ABL-mediated myeloid expansion and leukemic stem cell exhaustion. Leukemia 2013;27:619–28. PubMed PMC

Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996;88:2279–87. PubMed

Ilander M, Olsson-Stromberg U, Schlums H, Guilhot J, Bruck O, Lahteenmaki H, et al.  Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia 2017;31:1108–16. PubMed PMC

Siegel G, Schafer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation 2009;87(9 Suppl):S45–9. PubMed

Trotta R, Ciarlariello D, Dal Col J, Mao H, Chen L, Briercheck E, et al.  The PP2A inhibitor SET regulates granzyme B expression in human natural killer cells. Blood 2011;117:2378–84. PubMed PMC

Hughes A, Yong ASM. Immune effector recovery in chronic myeloid leukemia and treatment-free remission. Front Immunol 2017;8:469. PubMed PMC

Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999;94:2056–64. PubMed

Ma F, Wang SH, Cai Q, Jin LY, Zhou D, Ding J, et al.  Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma. Biomed Pharmacother 2017;88:863–9. PubMed

Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: a functional long noncoding RNA in tumorigenesis. J Cell Physiol 2019;234:17100–12. PubMed

Qin CF, Zhao FL. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Eur Rev Med Pharmacol Sci 2017;21:2377–84. PubMed

Blank U, Karlsson S. TGF-beta signaling in the control of hematopoietic stem cells. Blood 2015;125:3542–50. PubMed

Hou Y, Li W, Sheng Y, Li L, Huang Y, Zhang Z, et al.  The transcription factor Foxm1 is essential for the quiescence and maintenance of hematopoietic stem cells. Nat Immunol 2015;16:810–8. PubMed PMC

Li Y, Zhang T, Zhang Y, Zhao X, Wang W. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma. Cancer Sci 2018;109:3093–104. PubMed PMC

Mancini M, Castagnetti F, Soverini S, Leo E, De Benedittis C, Gugliotta G, et al.  FOXM1 transcription factor: a new component of chronic myeloid leukemia stem cell proliferation advantage. J Cell Biochem 2017;118:3968–75. PubMed

Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, et al.  Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016;534:341–6. PubMed PMC

Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, et al.  Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006;107:4532–9. PubMed

Ciccone M, Calin GA, Perrotti D. From the biology of PP2A to the PADs for therapy of hematologic malignancies. Front Oncol 2015;5:21. PubMed PMC

Shu J, Xia Z, Li L, Liang ET, Slipek N, Shen D, et al.  Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs. RNA Biol 2012;9:1275–87. PubMed PMC

Eiring AM, Neviani P, Santhanam R, Oaks JJ, Chang JS, Notari M, et al.  Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis. Blood 2008;111:816–28. PubMed PMC

Konishi H, Fujiya M, Ueno N, Moriichi K, Sasajima J, Ikuta K, et al.  microRNA-26a and -584 inhibit the colorectal cancer progression through inhibition of the binding of hnRNP A1-CDK6 mRNA. Biochem Biophys Res Commun 2015;467:847–52. PubMed

Perrotti D, Neviani P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 2013;14:e229–38. PubMed PMC

Du C, Pan P, Jiang Y, Zhang Q, Bao J, Liu C. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells. World J Surg Oncol 2016;14:258. PubMed PMC

Luedde T, Duderstadt M, Streetz KL, Tacke F, Kubicka S, Manns MP, et al.  C/EBP beta isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology 2004;40:356–65. PubMed

Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L, Chun HJ, et al.  ADAR1 activation drives leukemia stem cell self-renewal by impairing let-7 biogenesis. Cell Stem Cell 2016;19:177–91. PubMed PMC

Pellicano F, Park L, Hopcroft LEM, Shah MM, Jackson L, Scott MT, et al.  hsa-mir183/EGR1-mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood 2018;131:1532–44. PubMed PMC

Kijima M, Gardiol N, Held W. Natural killer cell mediated missing-self recognition can protect mice from primary chronic myeloid leukemia in vivo. PLoS One 2011;6:e27639. PubMed PMC

Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E, et al.  The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol 2013;4:490. PubMed PMC

Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, et al.  Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol 2015;6:482. PubMed PMC

Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 2015;16:254–67. PubMed PMC

Trotta R, Chen L, Costinean S, Josyula S, Mundy-Bosse BL, Ciarlariello D, et al.  Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood 2013;121:3126–34. PubMed PMC

Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, et al.  Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009;114:1374–82. PubMed PMC

Zhao L, Sun H, Kong H, Chen Z, Chen B, Zhou M. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging Mir-382. Cell Physiol Biochem 2017;42:2145–58. PubMed

Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al.  Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 2016;7:13616. PubMed PMC

Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O'Hare T, et al.  Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia 2012;26:1140–3. PubMed PMC

Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 2016;7:91. PubMed PMC

Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al.  Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013;13:285–99. PubMed PMC

Oaks JJ, Santhanam R, Walker CJ, Roof S, Harb JG, Ferenchak G, et al.  Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies. Blood 2013;122:1923–34. PubMed PMC

Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al.  miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 2010;140:652–65. PubMed PMC

Pineda G, Lennon KM, Delos Santos NP, Lambert-Fliszar F, Riso GL, Lazzari E, et al.  Tracking of normal and malignant progenitor cell cycle transit in a defined niche. Sci Rep 2016;6:23885. PubMed PMC

Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al.  BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013;123:1542–55. PubMed PMC

Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3:Unit 3 22. PubMed

Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW, et al.  FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007;117:2408–21. PubMed PMC

Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al.  Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 2016;8:357ra123. PubMed PMC

Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res 2013;41:W159–64. PubMed PMC

Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, et al.  mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 2018;46:D360–70. PubMed PMC

Wu WS, Tu BW, Chen TT, Hou SW, Tseng JT. CSmiRTar: condition-specific microRNA targets database. PLoS One 2017;12:e0181231. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Role of Autophagy and lncRNAs in the Maintenance of Cancer Stem Cells

. 2021 Mar 11 ; 13 (6) : . [epub] 20210311

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...