Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies

. 2020 Sep ; 10 (18) : 10095-10104. [epub] 20200816

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33005366

Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.

Zobrazit více v PubMed

Bagnères, A.‐G. , & Hanus, R. (2015). Communication and social regulation in termites Social Recognition in Invertebrates, 1, 193–248. 10.1007/978-3-319-17599-7_11 DOI

Bagnères, A.‐G. , Killian, A. , Clément, J.‐L. , & Lange, C. (1991). Interspecific recognition among termites of the genus Reticulitermes: Evidence for a role for the cuticular hydrocarbons. Journal of Chemical Ecology, 17(12), 2397–2420. 10.1007/BF00994590 PubMed DOI

Bagnères, A.‐G. , & Morgan, E. D. (1991). The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia, 47, 106–111. 10.1007/BF02041269 DOI

Bagnères, A.‐G. , Rivière, G. , & Clément, J.‐L. (1998). Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology, 8(4), 201–209. 10.1007/s000490050026 DOI

Bignell, D. E. (2016). The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics In Hurst C. (Ed.), The mechanistic benefits of microbial symbionts, advances in environmental microbiology (Vol. 2, pp. 121–172). Cham, Switzerland: Springer.

Blomquist, G. J. , Nelson, D. R. , & Renobales, M. D. (1987). Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology, 6(4), 227–265. 10.1002/arch.940060404 DOI

Bonavita‐Cougourdan, A. , Clément, J. L. , & Lange, C. (1987). Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. Journal of Entomological Science, 22, 1–10. 10.18474/0749-8004-22.1.1 DOI

Brent, C. S. , Penick, C. A. , Trobaugh, B. , Moore, D. , & Liebig, J. (2016). Induction of a reproductive‐specific cuticular hydrocarbon profile by a juvenile hormone analog in the termite Zootermopsis nevadensis . Chemoecology, 26(5), 195–203. 10.1007/s00049-016-0219-8 DOI

Buchli, H. (1958). L'origine des castes et les potentialités ontogéniques des Termites européens du genre Reticulitermes Holmgren. Annales Des Sciences Naturelles, Zoologie, 20, 263–429.

Chapman, R. F. (2012). Integument In Simpson S. J., & Douglas A. E. (Eds.), The insects: Structure and function (5th ed., pp. 415–438). New York, NY: Cambridge University Press.

Chouvenc, T. (2019). The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux, 66(2), 177–184. 10.1007/s00040-019-00690-3 DOI

Chouvenc, T. , Basille, M. , Li, H.‐F. , & Su, N.‐Y. (2014). Developmental instability in incipient colonies of social insects. PLoS One, 9(11), e113949 10.1371/journal.pone.0113949 PubMed DOI PMC

Chouvenc, T. , Basille, M. , & Su, N.‐Y. (2017). Role of accelerated developmental pathway and limited nurturing capacity on soldier developmental instability in subterranean termite incipient colonies. Insectes Sociaux, 64(4), 477–483. 10.1007/s00040-017-0566-7 DOI

Chouvenc, T. , Scheffrahn, R. H. , Mullins, A. J. , & Su, N.‐Y. (2017). Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in Southeastern Florida. Journal of Economic Entomology, 110(4), 1693–1704. 10.1093/jee/tox136 PubMed DOI

Chouvenc, T. , & Su, N.‐Y. (2014). Colony age‐dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Sociaux, 61(2), 171–182. 10.1007/s00040-014-0343-9 DOI

Chouvenc, T. , & Su, N.‐Y. (2017). Testing the role of cuticular hydrocarbons on intercolonial agonism in two subterranean termite species (Coptotermes) and their hybrids. Insectes Sociaux, 64(3), 347–355. 10.1007/s00040-017-0552-0 DOI

Clément, J.‐L. (1982). Signaux de contact responsables de l’agression interspécifique des Termites du genre Reticulitermes (Isoptères). Comptes Rendus Des Seances De L'academie Des Sciences, 294(12), 635–638.

Clément, J.‐L. , & Bagnères, A.‐G. (1998). Nestmate recognition in termites In Vander Meer R. K. (Ed.), Pheromone communication in social insects: Ants, wasps, bees, and termites (pp. 126–155). Boulder, CO: Westview Press.

Cole, E. L. , Ilieş, I. , & Rosengaus, R. B. (2018). Competing physiological demands during incipient colony foundation in a social insect: Consequences of pathogenic stress. Frontiers in Ecology and Evolution, 6, 1–12. 10.3389/fevo.2018.00103 DOI

Corbara, B. , & Errard, C. (1991). The organization of artificial heterospecific ant colonies. The case of the Manica rubida/Formica selysi association: Mixed colony or parallel colonies? Behavioural Processes, 23, 75–87. PubMed

Crozier, R. H. , & Dix, M. W. (1979). Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behavioral Ecology and Sociobiology, 4(3), 217–224.

Culhane, A. , Perriere, G. , Considine, E. , Cotter, T. , & Higgins, D. (2002). Between‐group analysis of microarray data. Bioinformatics, 18(12), 1600–1608. 10.1093/bioinformatics/18.12.1600 PubMed DOI

Cuvillier‐Hot, V. , Cobb, M. , Malosse, C. , & Peeters, C. (2001). Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. Journal of Insect Physiology, 47, 485–493. 10.1016/S0022-1910(00)00137-2 PubMed DOI

Dani, F. R. , Jones, G. R. , Corsi, S. , Beard, R. , Pradella, D. , & Turillazzi, S. (2005). Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chemical Senses, 30(6), 477–489. 10.1093/chemse/bji040 PubMed DOI

Darrouzet, E. , Labédan, M. , Landré, X. , Perdereau, E. , Christidès, J.P. , Bagnères, A.G. (2014). Endocrine control of cuticular hydrocarbon profiles during worker‐to‐soldier differentiation in the termite Reticulitermes flavipes . Journal of Insect Physiology, 61, 25–33. 10.1016/j.jinsphys.2013.12.006 PubMed DOI

Delphia, C. M. , Copren, K. A. , & Haverty, M. I. (2003). Agonistic behavior between individual worker termites from three cuticular hydrocarbon phenotypes of Reticulitermes (Isoptera: Rhinotermitidae) from Northern California. Annals of the Entomological Society of America, 96(4), 585–593.

Dettner, K. (2014). Chemical ecology and biochemistry of dytiscidae In Yee D. (Ed.), Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (pp. 235–306). Dordrecht, the Netherlands: Springer.

Dolédec, S. , & Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique. I‐ Description d’un plan d’observations complet par projection de variables. Acta Oecol Oecol Generalis, 8(3), 403–426.

Dray, S. , & Dufour, A.‐B. (2007). Theade4Package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.

Du, H. , Chouvenc, T. , Osbrink, W. L. A. , & Su, N. Y. (2017). Heterogeneous distribution of castes/instars and behaviors in the nest of Coptotermes formosanus Shiraki. Insectes Sociaux, 64(1), 103–112.

Funaro, C. F. , Böröczky, K. , Vargo, E. L. , Schal, C. (2018). Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes . Proceedings of the National Academy of Sciences, 115(15), 3888–3893. 10.1073/pnas.1721419115 PubMed DOI PMC

Guaraldo, A. C. , & Costa‐Leonardo, A. M. (2009). Preliminary fusion testing between whole young colonies of Coptotermes gestroi (Isoptera: Rhinotermitidae). Sociobiology, 53(3), 767–774.

Guerrieri, F. J. , Nehring, V. , Jørgensen, C. G. , Nielsen, J. , Galizia, C. G. , & D’Ettorre, P. (2009). Ants recognize foes and not friends. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2461–2468. 10.1098/rspb.2008.1860 PubMed DOI PMC

Hanus, R. , Šobotník, J. , Valterová, I. , & Lukáš, J. (2006). The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae). Insectes Sociaux, 53, 249–257.

Haverty, M. I. (1977). The proportion of soldiers in termite colonies: A list and a bibliography (Isoptera). Sociobiology, 2(3), 199–216.

Haverty, M. I. , Copren, K. A. , Getty, G. M. , & Lewis, V. R. (1999). Agonistic behavior and cuticular hydrocarbon phenotypes of colonies of reticulitermes (Isoptera: Rhinotermitidae) from Northern California. Annals of the Entomological Society of America, 92(2), 269–277. 10.1093/aesa/92.2.269 DOI

Haverty, M. I. , Grace, J. K. , Nelson, L. J. , & Yamamoto, R. T. (1996). Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 22(10), 1813–1834. PubMed

Haverty, M. I. , Nelson, L. J. , & Page, M. (1990). Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Journal of Chemical Ecology, 16(5), 1635–1647. 10.1007/BF01014096 PubMed DOI

Haverty, M. I. , Page, M. , Thorne, B. , & Escoubas, P. (1991). Cuticular hydrocarbons: Species and population‐level discrimination in termites. USDA Forest Service – General Technical Report. PSW‐128, 15–23.

Howard, K. J. , Johns, P. M. , Breisch, N. L. , & Thorne, B. L. (2013). Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis . Behavioral Ecology and Sociobiology, 67(10), 1575–1585. 10.1007/s00265-013-1569-7 DOI

Howard, R. W. , & Blomquist, G. J. (1982). Chemical ecology and biochemistry of insect hydrocarbons. Annual Review of Entomology, 27, 149–172. PubMed

Howard, R. W. , & Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50(1), 371–393. PubMed

Howard, R. W. , & Haverty, M. I. (1981). Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar). Environmental Entomology, 10(4), 546–549.

Howard, R. W. , McDaniel, C. A. , & Blomquist, G. J. (1978). Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 4(2), 233–245. 10.1007/BF00988058 DOI

Howard, R. W. , McDaniel, C. A. , & Blomquist, G. J. (1980). Chemical mimicry as an integrating mechanism: Cuticular hydrocarbons of a termitophile and its host. Science, 210(4468), 431–433. PubMed

Howard, R. W. , McDaniel, C. A. , Nelson, D. R. , Blomquist, G. J. , Gelbaum, L. T. , & Zalkow, L. H. (1982). Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species‐ and caste‐recognition cues. Journal of Chemical Ecology, 8(9), 1227–1239. 10.1007/BF00990755 PubMed DOI

Isingrini, M. , Lenoir, A. , & Jaisson, P. (1985). Preimaginal learning as a basis of colony‐brood recognition in the ant Cataglyphis cursor . Proceedings of the National Academy of Sciences of the United States of America, 82(24), 8545–8547. 10.1073/pnas.82.24.8545 PubMed DOI PMC

Johns, P. M. , Howard, K. J. , Breisch, N. L. , Rivera, A. , & Thorne, B. L. (2009). Nonrelatives inherit colony resources in a primitive termite. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17452–17456. 10.1073/pnas.0907961106 PubMed DOI PMC

Kaib, M. , Jmhasly, P. , Wilfert, L. , Durka, W. , Franke, S. , Francke, W. , … Brandl, R. (2004). Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus . Journal of Chemical Ecology, 30(2), 365–385. 10.1023/B:JOEC.0000017983.89279.c5 PubMed DOI

Korb, J. (2018). Chemical fertility signaling in termites: Idiosyncrasies and commonalities in comparison with ants. Journal of Chemical Ecology, 44(9), 818–826. 10.1007/s10886-018-0952-2 PubMed DOI

Korb, J. , & Roux, E. A. (2012). Why join a neighbour: Fitness consequences of colony fusions in termites. Journal of Evolutionary Biology, 25(11), 2161–2170. 10.1111/j.1420-9101.2012.02617.x PubMed DOI

Lee, S.‐B. , Mullins, A. , Aguilera‐Olivares, D. , Chouvenc, T. , & Su, N.‐Y. (2019). Fused colonies of the formosan subterranean termite (Blattodea: Rhinotermitidae) for laboratory experiments. Journal of Economic Entomology, 112(5), 2311–2315. 10.1093/jee/toz154 PubMed DOI

Lenoir, A. , D'Ettorre, P. , Errard, C. , & Hefetz, A. (2001). Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573–599. PubMed

Liebig, J. , Peeters, C. , Oldham, N. J. , Markstadter, C. , & Holldobler, B. (2000). Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proceedings of the National Academy of Sciences of the United States of America, 97, 4124–4131. 10.1073/pnas.97.8.4124 PubMed DOI PMC

Marten, A. , Kaib, M. , & Brandl, R. (2010). Are cuticular hydrocarbons involved in speciation of fungus‐growing termites (Isoptera: Macrotermitinae)? In Glaubrecht M. (Ed.), Evolution in action (pp. 283–306). Berlin, Heidelberg, Germany: Springer.

Martin, S. , & Drijfhout, F. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35(10), 1151–1161. 10.1007/s10886-009-9695-4 PubMed DOI

Matsuura, K. , & Nishida, T. (2001). Colony fusion in a termite: What makes the society "open"? Insectes Sociaux, 48, 378–383. 10.1007/PL00001795 DOI

Mitaka, Y. , & Matsuura, K. (2020). Age‐dependent increase in soldier pheromone of the termite Reticulitermes speratus . Journal of Chemical Ecology, 46(5–6), 483–489. 10.1007/s10886-020-01182-6 PubMed DOI

Nalepa, C. A. (2015). Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology, 40(4), 323–335. 10.1111/een.12197 DOI

Nutting, W. L. (1969). Flight and colony foundation In Krishna K., & Weesner F. M. (Eds.), Biology of termites (Vol. 1, pp. 233–282). New York, NY: Academic Press.

Oster, G. F. , & Wilson, E. O. (1978). Caste and ecology in the social insects. Princeton, NJ: Princeton University Press. PubMed

R Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/

Reeve, H. K. (1989). The evolution of conspecific acceptance thresholds. The American Naturalist, 133(3), 407–435. 10.1086/284926 DOI

Roisin, Y. (2015). What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecological Entomology, 41(1), 31–33. 10.1111/een.12278 DOI

Shelton, T. G. , & Grace, J. K. (1996). Review of agonistic behaviors in the Isoptera. Sociobiology, 28(2), 155–176.

Shelton, T. G. , & Grace, J. K. (1997). Suggestion of an environmental influence on intercolony agonism of Formosan subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology, 26(3), 632–637. 10.1093/ee/26.3.632 DOI

Singer, T. L. (1998). Roles of hydrocarbons in the recognition systems of insects. American Zoologist, 38(2), 394–405. 10.1093/icb/38.2.394 DOI

Sprenger, P. P. , & Menzel, F. (2020). Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecological News, 30, 1–26.

Su, N.‐Y. , & Haverty, M. I. (1991). Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition. Journal of Insect Behavior, 4(1), 115–128. 10.1007/BF01092555 DOI

Takahashi, S. , & Gassa, A. (1995). Roles of cuticular hydrocarbons in intra‐and interspecific recognition behavior of two Rhinotermitidae species. Journal of Chemical Ecology, 21(11), 1837–1845. 10.1007/BF02033680 PubMed DOI

Thioulouse, J. , Dray, S. , Dufour, A.‐B. , Siberchicot, A. , Jombart, T. , & Pavoine, S. (2018). Multivariate analysis of ecological data with ade4. New York, NY: Springer.

Thorne, B. L. , Breisch, N. L. , & Muscedere, M. L. (2003). Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12808–12813. 10.1073/pnas.2133530100 PubMed DOI PMC

Thorne, B. L. , & Haverty, M. I. (1991). A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology, 19, 115–145.

van Zweden, J. S. , & D’Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons In Blomquist G. J., & Bagnères A.‐G. (Eds.), Insect hydrocarbons: Biology, biochemistry, and chemical ecology (pp. 222–243). Cambridge, UK: Cambridge University Press.

Vander Meer, R. K. , Saliwanchik, D. , & Lavine, B. (1989). Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta . Journal of Chemical Ecology, 15, 2115–2125. 10.1007/BF01207442 PubMed DOI

Vargo, E. L. (2019). Diversity of termite breeding systems. Insects, 10(2), 52 10.3390/insects10020052 PubMed DOI PMC

Vargo, E. L. , & Husseneder, C. (2011). Genetic structure of termite colonies In Bignell D. E., Roisin Y., & Lo N. (Eds.), Biology of termites: A modern synthesis (pp. 321–346). New York, NY: Springer.

Waller, D. A. , & La Fage, J. P. (1987). Unpalatability as a passive defense of Coptotermes formosanus Shiraki soldiers against ant predation. Journal of Applied Entomology, 103(1–5), 148–153.

Wallis, D. (1963). A comparison of the response to aggressive behaviour in two species of ants, Formica fusca and Formica sanguinea . Animal Behaviour, 11(1), 164–171. 10.1016/0003-3472(63)90025-3 DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.59zw3r24h

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...