Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33005366
PubMed Central
PMC7520186
DOI
10.1002/ece3.6669
PII: ECE36669
Knihovny.cz E-zdroje
- Klíčová slova
- Coptotermes gestroi, chemical ecology, colony fusion, recognition, social insects,
- Publikační typ
- časopisecké články MeSH
Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.
Zobrazit více v PubMed
Bagnères, A.‐G. , & Hanus, R. (2015). Communication and social regulation in termites Social Recognition in Invertebrates, 1, 193–248. 10.1007/978-3-319-17599-7_11 DOI
Bagnères, A.‐G. , Killian, A. , Clément, J.‐L. , & Lange, C. (1991). Interspecific recognition among termites of the genus Reticulitermes: Evidence for a role for the cuticular hydrocarbons. Journal of Chemical Ecology, 17(12), 2397–2420. 10.1007/BF00994590 PubMed DOI
Bagnères, A.‐G. , & Morgan, E. D. (1991). The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia, 47, 106–111. 10.1007/BF02041269 DOI
Bagnères, A.‐G. , Rivière, G. , & Clément, J.‐L. (1998). Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology, 8(4), 201–209. 10.1007/s000490050026 DOI
Bignell, D. E. (2016). The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics In Hurst C. (Ed.), The mechanistic benefits of microbial symbionts, advances in environmental microbiology (Vol. 2, pp. 121–172). Cham, Switzerland: Springer.
Blomquist, G. J. , Nelson, D. R. , & Renobales, M. D. (1987). Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology, 6(4), 227–265. 10.1002/arch.940060404 DOI
Bonavita‐Cougourdan, A. , Clément, J. L. , & Lange, C. (1987). Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. Journal of Entomological Science, 22, 1–10. 10.18474/0749-8004-22.1.1 DOI
Brent, C. S. , Penick, C. A. , Trobaugh, B. , Moore, D. , & Liebig, J. (2016). Induction of a reproductive‐specific cuticular hydrocarbon profile by a juvenile hormone analog in the termite Zootermopsis nevadensis . Chemoecology, 26(5), 195–203. 10.1007/s00049-016-0219-8 DOI
Buchli, H. (1958). L'origine des castes et les potentialités ontogéniques des Termites européens du genre Reticulitermes Holmgren. Annales Des Sciences Naturelles, Zoologie, 20, 263–429.
Chapman, R. F. (2012). Integument In Simpson S. J., & Douglas A. E. (Eds.), The insects: Structure and function (5th ed., pp. 415–438). New York, NY: Cambridge University Press.
Chouvenc, T. (2019). The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux, 66(2), 177–184. 10.1007/s00040-019-00690-3 DOI
Chouvenc, T. , Basille, M. , Li, H.‐F. , & Su, N.‐Y. (2014). Developmental instability in incipient colonies of social insects. PLoS One, 9(11), e113949 10.1371/journal.pone.0113949 PubMed DOI PMC
Chouvenc, T. , Basille, M. , & Su, N.‐Y. (2017). Role of accelerated developmental pathway and limited nurturing capacity on soldier developmental instability in subterranean termite incipient colonies. Insectes Sociaux, 64(4), 477–483. 10.1007/s00040-017-0566-7 DOI
Chouvenc, T. , Scheffrahn, R. H. , Mullins, A. J. , & Su, N.‐Y. (2017). Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in Southeastern Florida. Journal of Economic Entomology, 110(4), 1693–1704. 10.1093/jee/tox136 PubMed DOI
Chouvenc, T. , & Su, N.‐Y. (2014). Colony age‐dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Sociaux, 61(2), 171–182. 10.1007/s00040-014-0343-9 DOI
Chouvenc, T. , & Su, N.‐Y. (2017). Testing the role of cuticular hydrocarbons on intercolonial agonism in two subterranean termite species (Coptotermes) and their hybrids. Insectes Sociaux, 64(3), 347–355. 10.1007/s00040-017-0552-0 DOI
Clément, J.‐L. (1982). Signaux de contact responsables de l’agression interspécifique des Termites du genre Reticulitermes (Isoptères). Comptes Rendus Des Seances De L'academie Des Sciences, 294(12), 635–638.
Clément, J.‐L. , & Bagnères, A.‐G. (1998). Nestmate recognition in termites In Vander Meer R. K. (Ed.), Pheromone communication in social insects: Ants, wasps, bees, and termites (pp. 126–155). Boulder, CO: Westview Press.
Cole, E. L. , Ilieş, I. , & Rosengaus, R. B. (2018). Competing physiological demands during incipient colony foundation in a social insect: Consequences of pathogenic stress. Frontiers in Ecology and Evolution, 6, 1–12. 10.3389/fevo.2018.00103 DOI
Corbara, B. , & Errard, C. (1991). The organization of artificial heterospecific ant colonies. The case of the Manica rubida/Formica selysi association: Mixed colony or parallel colonies? Behavioural Processes, 23, 75–87. PubMed
Crozier, R. H. , & Dix, M. W. (1979). Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behavioral Ecology and Sociobiology, 4(3), 217–224.
Culhane, A. , Perriere, G. , Considine, E. , Cotter, T. , & Higgins, D. (2002). Between‐group analysis of microarray data. Bioinformatics, 18(12), 1600–1608. 10.1093/bioinformatics/18.12.1600 PubMed DOI
Cuvillier‐Hot, V. , Cobb, M. , Malosse, C. , & Peeters, C. (2001). Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. Journal of Insect Physiology, 47, 485–493. 10.1016/S0022-1910(00)00137-2 PubMed DOI
Dani, F. R. , Jones, G. R. , Corsi, S. , Beard, R. , Pradella, D. , & Turillazzi, S. (2005). Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chemical Senses, 30(6), 477–489. 10.1093/chemse/bji040 PubMed DOI
Darrouzet, E. , Labédan, M. , Landré, X. , Perdereau, E. , Christidès, J.P. , Bagnères, A.G. (2014). Endocrine control of cuticular hydrocarbon profiles during worker‐to‐soldier differentiation in the termite Reticulitermes flavipes . Journal of Insect Physiology, 61, 25–33. 10.1016/j.jinsphys.2013.12.006 PubMed DOI
Delphia, C. M. , Copren, K. A. , & Haverty, M. I. (2003). Agonistic behavior between individual worker termites from three cuticular hydrocarbon phenotypes of Reticulitermes (Isoptera: Rhinotermitidae) from Northern California. Annals of the Entomological Society of America, 96(4), 585–593.
Dettner, K. (2014). Chemical ecology and biochemistry of dytiscidae In Yee D. (Ed.), Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (pp. 235–306). Dordrecht, the Netherlands: Springer.
Dolédec, S. , & Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique. I‐ Description d’un plan d’observations complet par projection de variables. Acta Oecol Oecol Generalis, 8(3), 403–426.
Dray, S. , & Dufour, A.‐B. (2007). Theade4Package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.
Du, H. , Chouvenc, T. , Osbrink, W. L. A. , & Su, N. Y. (2017). Heterogeneous distribution of castes/instars and behaviors in the nest of Coptotermes formosanus Shiraki. Insectes Sociaux, 64(1), 103–112.
Funaro, C. F. , Böröczky, K. , Vargo, E. L. , Schal, C. (2018). Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes . Proceedings of the National Academy of Sciences, 115(15), 3888–3893. 10.1073/pnas.1721419115 PubMed DOI PMC
Guaraldo, A. C. , & Costa‐Leonardo, A. M. (2009). Preliminary fusion testing between whole young colonies of Coptotermes gestroi (Isoptera: Rhinotermitidae). Sociobiology, 53(3), 767–774.
Guerrieri, F. J. , Nehring, V. , Jørgensen, C. G. , Nielsen, J. , Galizia, C. G. , & D’Ettorre, P. (2009). Ants recognize foes and not friends. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2461–2468. 10.1098/rspb.2008.1860 PubMed DOI PMC
Hanus, R. , Šobotník, J. , Valterová, I. , & Lukáš, J. (2006). The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae). Insectes Sociaux, 53, 249–257.
Haverty, M. I. (1977). The proportion of soldiers in termite colonies: A list and a bibliography (Isoptera). Sociobiology, 2(3), 199–216.
Haverty, M. I. , Copren, K. A. , Getty, G. M. , & Lewis, V. R. (1999). Agonistic behavior and cuticular hydrocarbon phenotypes of colonies of reticulitermes (Isoptera: Rhinotermitidae) from Northern California. Annals of the Entomological Society of America, 92(2), 269–277. 10.1093/aesa/92.2.269 DOI
Haverty, M. I. , Grace, J. K. , Nelson, L. J. , & Yamamoto, R. T. (1996). Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 22(10), 1813–1834. PubMed
Haverty, M. I. , Nelson, L. J. , & Page, M. (1990). Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Journal of Chemical Ecology, 16(5), 1635–1647. 10.1007/BF01014096 PubMed DOI
Haverty, M. I. , Page, M. , Thorne, B. , & Escoubas, P. (1991). Cuticular hydrocarbons: Species and population‐level discrimination in termites. USDA Forest Service – General Technical Report. PSW‐128, 15–23.
Howard, K. J. , Johns, P. M. , Breisch, N. L. , & Thorne, B. L. (2013). Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis . Behavioral Ecology and Sociobiology, 67(10), 1575–1585. 10.1007/s00265-013-1569-7 DOI
Howard, R. W. , & Blomquist, G. J. (1982). Chemical ecology and biochemistry of insect hydrocarbons. Annual Review of Entomology, 27, 149–172. PubMed
Howard, R. W. , & Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50(1), 371–393. PubMed
Howard, R. W. , & Haverty, M. I. (1981). Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar). Environmental Entomology, 10(4), 546–549.
Howard, R. W. , McDaniel, C. A. , & Blomquist, G. J. (1978). Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 4(2), 233–245. 10.1007/BF00988058 DOI
Howard, R. W. , McDaniel, C. A. , & Blomquist, G. J. (1980). Chemical mimicry as an integrating mechanism: Cuticular hydrocarbons of a termitophile and its host. Science, 210(4468), 431–433. PubMed
Howard, R. W. , McDaniel, C. A. , Nelson, D. R. , Blomquist, G. J. , Gelbaum, L. T. , & Zalkow, L. H. (1982). Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species‐ and caste‐recognition cues. Journal of Chemical Ecology, 8(9), 1227–1239. 10.1007/BF00990755 PubMed DOI
Isingrini, M. , Lenoir, A. , & Jaisson, P. (1985). Preimaginal learning as a basis of colony‐brood recognition in the ant Cataglyphis cursor . Proceedings of the National Academy of Sciences of the United States of America, 82(24), 8545–8547. 10.1073/pnas.82.24.8545 PubMed DOI PMC
Johns, P. M. , Howard, K. J. , Breisch, N. L. , Rivera, A. , & Thorne, B. L. (2009). Nonrelatives inherit colony resources in a primitive termite. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17452–17456. 10.1073/pnas.0907961106 PubMed DOI PMC
Kaib, M. , Jmhasly, P. , Wilfert, L. , Durka, W. , Franke, S. , Francke, W. , … Brandl, R. (2004). Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus . Journal of Chemical Ecology, 30(2), 365–385. 10.1023/B:JOEC.0000017983.89279.c5 PubMed DOI
Korb, J. (2018). Chemical fertility signaling in termites: Idiosyncrasies and commonalities in comparison with ants. Journal of Chemical Ecology, 44(9), 818–826. 10.1007/s10886-018-0952-2 PubMed DOI
Korb, J. , & Roux, E. A. (2012). Why join a neighbour: Fitness consequences of colony fusions in termites. Journal of Evolutionary Biology, 25(11), 2161–2170. 10.1111/j.1420-9101.2012.02617.x PubMed DOI
Lee, S.‐B. , Mullins, A. , Aguilera‐Olivares, D. , Chouvenc, T. , & Su, N.‐Y. (2019). Fused colonies of the formosan subterranean termite (Blattodea: Rhinotermitidae) for laboratory experiments. Journal of Economic Entomology, 112(5), 2311–2315. 10.1093/jee/toz154 PubMed DOI
Lenoir, A. , D'Ettorre, P. , Errard, C. , & Hefetz, A. (2001). Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573–599. PubMed
Liebig, J. , Peeters, C. , Oldham, N. J. , Markstadter, C. , & Holldobler, B. (2000). Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proceedings of the National Academy of Sciences of the United States of America, 97, 4124–4131. 10.1073/pnas.97.8.4124 PubMed DOI PMC
Marten, A. , Kaib, M. , & Brandl, R. (2010). Are cuticular hydrocarbons involved in speciation of fungus‐growing termites (Isoptera: Macrotermitinae)? In Glaubrecht M. (Ed.), Evolution in action (pp. 283–306). Berlin, Heidelberg, Germany: Springer.
Martin, S. , & Drijfhout, F. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35(10), 1151–1161. 10.1007/s10886-009-9695-4 PubMed DOI
Matsuura, K. , & Nishida, T. (2001). Colony fusion in a termite: What makes the society "open"? Insectes Sociaux, 48, 378–383. 10.1007/PL00001795 DOI
Mitaka, Y. , & Matsuura, K. (2020). Age‐dependent increase in soldier pheromone of the termite Reticulitermes speratus . Journal of Chemical Ecology, 46(5–6), 483–489. 10.1007/s10886-020-01182-6 PubMed DOI
Nalepa, C. A. (2015). Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology, 40(4), 323–335. 10.1111/een.12197 DOI
Nutting, W. L. (1969). Flight and colony foundation In Krishna K., & Weesner F. M. (Eds.), Biology of termites (Vol. 1, pp. 233–282). New York, NY: Academic Press.
Oster, G. F. , & Wilson, E. O. (1978). Caste and ecology in the social insects. Princeton, NJ: Princeton University Press. PubMed
R Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/
Reeve, H. K. (1989). The evolution of conspecific acceptance thresholds. The American Naturalist, 133(3), 407–435. 10.1086/284926 DOI
Roisin, Y. (2015). What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecological Entomology, 41(1), 31–33. 10.1111/een.12278 DOI
Shelton, T. G. , & Grace, J. K. (1996). Review of agonistic behaviors in the Isoptera. Sociobiology, 28(2), 155–176.
Shelton, T. G. , & Grace, J. K. (1997). Suggestion of an environmental influence on intercolony agonism of Formosan subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology, 26(3), 632–637. 10.1093/ee/26.3.632 DOI
Singer, T. L. (1998). Roles of hydrocarbons in the recognition systems of insects. American Zoologist, 38(2), 394–405. 10.1093/icb/38.2.394 DOI
Sprenger, P. P. , & Menzel, F. (2020). Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecological News, 30, 1–26.
Su, N.‐Y. , & Haverty, M. I. (1991). Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition. Journal of Insect Behavior, 4(1), 115–128. 10.1007/BF01092555 DOI
Takahashi, S. , & Gassa, A. (1995). Roles of cuticular hydrocarbons in intra‐and interspecific recognition behavior of two Rhinotermitidae species. Journal of Chemical Ecology, 21(11), 1837–1845. 10.1007/BF02033680 PubMed DOI
Thioulouse, J. , Dray, S. , Dufour, A.‐B. , Siberchicot, A. , Jombart, T. , & Pavoine, S. (2018). Multivariate analysis of ecological data with ade4. New York, NY: Springer.
Thorne, B. L. , Breisch, N. L. , & Muscedere, M. L. (2003). Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12808–12813. 10.1073/pnas.2133530100 PubMed DOI PMC
Thorne, B. L. , & Haverty, M. I. (1991). A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology, 19, 115–145.
van Zweden, J. S. , & D’Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons In Blomquist G. J., & Bagnères A.‐G. (Eds.), Insect hydrocarbons: Biology, biochemistry, and chemical ecology (pp. 222–243). Cambridge, UK: Cambridge University Press.
Vander Meer, R. K. , Saliwanchik, D. , & Lavine, B. (1989). Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta . Journal of Chemical Ecology, 15, 2115–2125. 10.1007/BF01207442 PubMed DOI
Vargo, E. L. (2019). Diversity of termite breeding systems. Insects, 10(2), 52 10.3390/insects10020052 PubMed DOI PMC
Vargo, E. L. , & Husseneder, C. (2011). Genetic structure of termite colonies In Bignell D. E., Roisin Y., & Lo N. (Eds.), Biology of termites: A modern synthesis (pp. 321–346). New York, NY: Springer.
Waller, D. A. , & La Fage, J. P. (1987). Unpalatability as a passive defense of Coptotermes formosanus Shiraki soldiers against ant predation. Journal of Applied Entomology, 103(1–5), 148–153.
Wallis, D. (1963). A comparison of the response to aggressive behaviour in two species of ants, Formica fusca and Formica sanguinea . Animal Behaviour, 11(1), 164–171. 10.1016/0003-3472(63)90025-3 DOI
Dryad
10.5061/dryad.59zw3r24h