New Insights towards High-Temperature Ethanol-Sensing Mechanism of ZnO-Based Chemiresistors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02804S
Grantová Agentura České Republiky
PubMed
33007876
PubMed Central
PMC7582869
DOI
10.3390/s20195602
PII: s20195602
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO nanorods, acetaldehyde pathway, carbon contamination, ethanol-sensing mechanism, near-ambient pressure XPS,
- Publikační typ
- časopisecké články MeSH
In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.
Zobrazit více v PubMed
Norton D.P., Heo Y.W., Ivill M.P., Ip K., Pearton S.J., Chisholm M.F., Steiner T. ZnO: Growth, doping and processing. Mater. Today. 2008;7:34–40. doi: 10.1016/S1369-7021(04)00287-1. DOI
Kuld S., Thorhauge M., Falsig H., Elkjær C.F., Helveg S., Chorkendorff I., Sehested J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science. 2016;352:969–974. doi: 10.1126/science.aaf0718. PubMed DOI
Leschkies K.S., Divakar R., Basu J., Enache-Pommer E., Boercker J.E., Carter C.B., Kortshagen U.R., Norris D.J., Aydil E.S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007;7:1793–1798. doi: 10.1021/nl070430o. PubMed DOI
Vittal R., Ho K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017;70:920–935. doi: 10.1016/j.rser.2016.11.273. DOI
Guo J., Zhang J., Zhu M., Ju D., Xu H., Cao B. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B Chem. 2014;199:339–345. doi: 10.1016/j.snb.2014.04.010. DOI
Kumar R., Al-Dossary O., Kumar G., Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: A review. NanoMicro Lett. 2015;7:97–120. doi: 10.1007/s40820-014-0023-3. PubMed DOI PMC
Maziarz W., Rydosz A., Pisarkiewicz T., Domański K., Grabiec P. Gas-sensitive properties of Zno nanorods/nanowires obtained by electrodeposition and electrospinning methods. Procedia Eng. 2012;47:841–844. doi: 10.1016/j.proeng.2012.09.278. DOI
Batzill M., Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005;79:47–154. doi: 10.1016/j.progsurf.2005.09.002. DOI
Seiyama T., Kato A., Fujiishi K., Nagatani M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962;34:1502–1503. doi: 10.1021/ac60191a001. DOI
Suzuki T.T., Ohgaki T., Adachi Y., Sakaguchi I., Nakamura M., Ohashi H., Aimi A., Fujimoto K. Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single- Crystalline Substrate. ACS Omega. 2020 doi: 10.1021/acsomega.0c02750. PubMed DOI PMC
Tharsika T., Thanihaichelvan M., Haseeb A.S.M.A., Akbar S.A. Highly sensitive and selective ethanol sensor based on zno nanorod on SnO2 thin film fabricated by spray pyrolysis. Front. Mater. 2019;6:1–9. doi: 10.3389/fmats.2019.00122. DOI
Kaur N., Singh M., Comini E. One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir. 2020;36:6326–6344. doi: 10.1021/acs.langmuir.0c00701. PubMed DOI PMC
Yamazoe N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991;5:7–19. doi: 10.1016/0925-4005(91)80213-4. DOI
Gurlo A. Interplay between O2 and SnO2: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem. 2006;7:2041–2052. doi: 10.1002/cphc.200600292. PubMed DOI
Abokifa A.A., Haddad K., Fortner J., Lo C.S., Biswas P. Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: Theoretical calculations compared to experimental results. J. Mater. Chem. A. 2018;6:2053–2066. doi: 10.1039/C7TA09535J. DOI
Shankar P., Rayappan J.B.B. Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique. J. Mater. Chem. C. 2017;5:10869–10880. doi: 10.1039/C7TC03771F. DOI
Chen Y., Zhu C.L., Xiao G. Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology. 2006;17:4537–4541. doi: 10.1088/0957-4484/17/18/002. PubMed DOI
Bhati V.S., Hojamberdiev M., Kumar M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020;6:46–62. doi: 10.1016/j.egyr.2019.08.070. DOI
Leonardi S.G. Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors. 2017;5:17. doi: 10.3390/chemosensors5020017. DOI
Zhu L., Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017;267:242–261. doi: 10.1016/j.sna.2017.10.021. DOI
Wang L., Kang Y., Liu X., Zhang S., Huang W., Wang S. ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 2012;162:237–243. doi: 10.1016/j.snb.2011.12.073. DOI
Roy S., Banerjee N., Sarkar C.K., Bhattacharyya P. Development of an ethanol sensor based on CBD grown ZnO nanorods. Solid State Electron. 2013;87:43–50. doi: 10.1016/j.sse.2013.05.003. DOI
Mani G.K., Rayappan J.B.B. ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B Chem. 2016;223:343–351. doi: 10.1016/j.snb.2015.09.103. DOI
Nowicki M. A modified impedance-frequency converter for inexpensive inductive and resistive sensor applications. Sensors. 2019;19:121. doi: 10.3390/s19010121. PubMed DOI PMC
Bobkov A., Varezhnikov A., Plugin I., Fedorov F.S., Trouillet V., Geckle U., Sommer M., Goffman V., Moshnikov V., Sysoev V. The multisensor array based on grown-on-chip zinc oxide nanorod network for selective discrimination of alcohol vapors at sub-ppm range. Sensors. 2019;19:4265. doi: 10.3390/s19194265. PubMed DOI PMC
Gurlo A., Riedel R. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. Int. Ed. 2007;46:3826–3848. doi: 10.1002/anie.200602597. PubMed DOI
Hongsith N., Wongrat E., Kerdcharoen T., Choopun S. Sensor response formula for sensor based on ZnO nanostructures. Sens. Actuators B Chem. 2010;144:67–72. doi: 10.1016/j.snb.2009.10.037. DOI
Geunjae K., Kijung Y. Adsorption and reaction of ethanol on ZnO nanowires. J. Phys. Chem. C. 2008;112:3036–3041.
Xu J., Han J., Zhang Y., Sun Y., Xie B. Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B Chem. 2008;132:334–339. doi: 10.1016/j.snb.2008.01.062. DOI
Baikie I.D., Grain A., Sutherland J., Law J. Near ambient pressure photoemission spectroscopy of metal and semiconductor surfaces. Phys. Status Solidi. 2015;12:259–262. doi: 10.1002/pssc.201400086. DOI
Prosvirin I.P., Bukhtiyarov A.V., Bluhm H., Bukhtiyarov V.I. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation. Appl. Surf. Sci. 2016;363:303–309. doi: 10.1016/j.apsusc.2015.11.258. DOI
Wolfbeisser A., Kovács G., Kozlov S.M., Föttinger K., Bernardi J., Klötzer B., Neyman K.M., Rupprechter G. Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study. Catal. Today. 2017;283:134–143. doi: 10.1016/j.cattod.2016.04.022. DOI
Vorokhta M., Khalakhan I., Vondráček M., Tomeček D., Vorokhta M., Marešová E., Nováková J., Vlček J., Fitl P., Novotný M., et al. Investigation of gas sensing mechanism of SnO2 based chemiresistor using near ambient pressure XPS. Surf. Sci. 2018;687:284–290. doi: 10.1016/j.susc.2018.08.003. DOI
Hozák P., Vorokhta M., Khalakhan I., Jarkovská K., Cibulková J., Fitl P., Vlček J., Fara J., Tomeček D., Novotný M., et al. New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS. J. Phys. Chem. C. 2019;123:29739–29749. doi: 10.1021/acs.jpcc.9b09124. DOI
Yatskiv R., Tiagulskyi S., Grym J., Vaniš J., Bašinová N., Horak P., Torrisi A., Ceccio G., Vacik J., Vrňata M. Optical and electrical characterization of CuO/ZnO heterojunctions. Thin Solid Films. 2020;693:137656. doi: 10.1016/j.tsf.2019.137656. DOI
Tomecek D., Hruska M., Fitl P., Vlcek J., Maresova E., Havlova S., Patrone L., Vrnata M. Phthalocyanine Photoregeneration for Low Power Consumption Chemiresistors. ACS Sens. 2018;3:2558–2565. doi: 10.1021/acssensors.8b00922. PubMed DOI
Myslík V., Vysloužil F., Vrňata M., Rozehnal Z., Jelíinek M., Fryček R., Kovanda M. Phase ac-sensitivity of oxidic and acetylacetonic gas sensors. Sens. Actuators B Chem. 2003;89:205–211. doi: 10.1016/S0925-4005(02)00466-5. DOI
Fitl P., Vrnata M., Kopecky D., Vlcek J., Skodova J., Bulir J., Novotny M., Pokorny P. Laser deposition of sulfonated phthalocyanines for gas sensors. Appl. Surf. Sci. 2014;302:37–41. doi: 10.1016/j.apsusc.2014.01.128. DOI
Mudiyanselage K., Burrell A.K., Senanayake S.D., Idriss H. XPS and NEXAFS study of the reactions of acetic acid and acetaldehyde over UO2(100) thin film. Surf. Sci. 2019;680:107–112. doi: 10.1016/j.susc.2018.10.017. DOI
Jacobs G., Keogh R.A., Davis B.H. Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. J. Catal. 2007;245:326–337. doi: 10.1016/j.jcat.2006.10.018. DOI
Vohs J.M., Barteau M.A. Formation of Stable Alkyl and Carboxylate Intermediates in the Reactions of Aldehydes on the ZnO(0001) Surface. Langmuir. 1989;5:965–972. doi: 10.1021/la00088a015. DOI
Singh M., Kaur N., Drera G., Casotto A., Ermenegildo L.S., Comini E. SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Adv. Funct. Mater. 2020;2003217:1–12. doi: 10.1002/adfm.202003217. DOI
Zuo J., Erbe A. Optical and electronic properties of native zinc oxide films on polycrystalline Zn. Phys. Chem. Chem. Phys. 2010;12:11467–11476. doi: 10.1039/c004532b. PubMed DOI
Wang C., Yin L., Zhang L., Xiang D., Gao R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors. 2010;10:2088–2106. doi: 10.3390/s100302088. PubMed DOI PMC
Zimmermann P., Sobotík P., Kocán P., Ošt’Ádal I., Vorokhta M., Acres R.G., Matolín V. Adsorption of ethylene on Sn and in terminated Si(001) surface studied by photoelectron spectroscopy and scanning tunneling microscopy. J. Chem. Phys. 2016;145:094701. doi: 10.1063/1.4961737. PubMed DOI
Rai P., Yu Y.T. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B Chem. 2012;173:58–65. doi: 10.1016/j.snb.2012.05.068. DOI
Saboor F.H., Khodadadi A.A., Mortazavi Y., Asgari M. Microemulsion synthesized silica/ZnO stable core/shell sensors highly selective to ethanol with minimum sensitivity to humidity. Sens. Actuators B Chem. 2017;238:1070–1083. doi: 10.1016/j.snb.2016.07.127. DOI
Kunat M., Girol S.G., Burghaus U., Wöll C. The Interaction of Water with the Oxygen-Terminated, Polar Surface of ZnO. J. Phys. Chem. B. 2003;107:14350–14356. doi: 10.1021/jp030675z. DOI