Polarization Differential Visible Light Communication: Theory and Experimental Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CELSA-19-172
Central Europe Leuven Strategic Alliance: Polarization In wireless CommuNICations (PICNIC)
PubMed
33023016
PubMed Central
PMC7583938
DOI
10.3390/s20195661
PII: s20195661
Knihovny.cz E-zdroje
- Klíčová slova
- Visible Light Communication, differential, polarization, quadrant photodiode,
- Publikační typ
- časopisecké články MeSH
Visible Light Communication (VLC) has received substantial research attention in the last decade. The vast majority of VLC focuses on the modulation of the transmitted light intensity. In this work, however, the intensity is kept constant while the polarization direction is deployed as a carrier of information. Demodulation is realized by using a differential receiver pair equipped with mutually orthogonal polarizers. An analytical expression to evaluate the Signal-to-Noise Ratio (SNR) as a function of the rotation angle of the receiver is derived. It is demonstrated that the signal quality can deteriorate heavily with receiver orientation when using a single differential receiver pair. A way to overcome this drawback using two receiver pairs is described. The analytical expression is experimentally verified through measurements with two different receiver setups. This work demonstrates the potential of polarization-based modulation in the field of VLC, where receiver rotation robustness has been achieved by means of a dedicated quadrant photodiode receiver.
Zobrazit více v PubMed
Karunatilaka D., Zafar F., Kalavally V., Parthiban R. LED Based Indoor Visible Light Communications: State of the Art. IEEE Commun. Surv. Tutor. 2015;17:1649–1678. doi: 10.1109/COMST.2015.2417576. DOI
Pathak P.H., Feng X., Hu P., Mohapatra P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015;17:2047–2077. doi: 10.1109/COMST.2015.2476474. DOI
IEEE . IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Optical Wireless Communications. IEEE; Piscataway, NZ, USA: 2011. pp. 1–407. IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011) DOI
Zhuang Y., Hua L., Qi L., Yang J., Cao P., Cao Y., Wu Y., Thompson J., Haas H. A Survey of Positioning Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018;20:1963–1988. doi: 10.1109/COMST.2018.2806558. DOI
De Lausnay S., De Strycker L., Goemaere J., Nauwelaers B., Stevens N. A survey on multiple access Visible Light Positioning; Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech); Balaclava, Mauritius. 3–6 August 2016; pp. 38–42. DOI
Cincotta S., He C., Neild A., Armstrong J. QADA-PLUS: A Novel Two-Stage Receiver for Visible Light Positioning; Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN); Nantes, France. 24–27 September 2018; pp. 1–5. DOI
Aparicio-Esteve E., Hernandez A., Urena J., Villadangos J.M. Visible Light Positioning System Based on a Quadrant Photodiode and Encoding Techniques. IEEE Trans. Instrum. Meas. 2019;69:5589–5603. doi: 10.1109/TIM.2019.2962563. DOI
Mohammed M., He C., Cincotta S., Neild A., Armstrong J. Communication Aspects of Visible Light Positioning (VLP) Systems Using a Quadrature Angular Diversity Aperture (QADA) Receiver. Sensors. 2020;20:1977. doi: 10.3390/s20071977. PubMed DOI PMC
Yang Z., Wang Z., Zhang J., Huang C., Zhang Q. Polarization-Based Visible Light Positioning. IEEE Trans. Mob. Comput. 2019;18:715–727. doi: 10.1109/TMC.2018.2838150. DOI
Chan C.L., Tsai H.M., Lin K.C.J. POLI: Long-Range Visible Light Communications Using Polarized Light Intensity Modulation; Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services; Niagara Falls, NY, USA. 19–23 June 2017; pp. 109–120.
Wang Y., Yang C., Wang Y., Chi N. Gigabit polarization division multiplexing in visible light communication. Opt. Lett. 2014;39:1823–1826. doi: 10.1364/OL.39.001823. PubMed DOI
Kwon D.H., Kim S.J., Yang S.H., Han S.K. Optimized pre-equalization for gigabit polarization division multiplexed visible light communication. Opt. Eng. 2015;54 doi: 10.1117/1.OE.54.7.076101. DOI
Kim S.J., Kwon D.H., Yang S.H., Han S.K. Asymmetric multi-input multi-output system in visible light communication for polarization-tolerant polarization division multiplexing transmission. Opt. Eng. 2016;55 doi: 10.1117/1.OE.55.3.036102. DOI
Chvojka P., Burton A., Pesek P., Li X., Ghassemlooy Z., Zvanovec S., Haigh P.A. Visible light communications: Increasing data rates with polarization division multiplexing. Opt. Lett. 2020;45:2977–2980. doi: 10.1364/OL.392167. PubMed DOI
Wei L.Y., Hsu C.W., Chow C.W., Yeh C.H. 40-Gbit/s Visible Light Communication using Polarization-Multiplexed R/G/B Laser Diodes with 2-m Free-Space Transmission; Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC); San Diego, CA, USA. 3–7 March 2019; pp. 1–3.
Atta M.A., Bermak A. A Polarization-Based Interference-Tolerant VLC Link for Low Data Rate Applications. IEEE Photonics J. 2018;10:1–11. doi: 10.1109/JPHOT.2018.2809792. DOI
De Bruycker J., Raes W., Zvanovec S., Stevens N. Influence of Receiver Orientation on Differential Polarization-based VLC; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (CSNDSP2020); Porto, Portugal. 20–22 July 2020.
Collett E. Field Guide to Polarization. SPIE Press; Bellingham, WA, US: 2005. (Field Guide Series).
Keskin M.F., Gezici S. Comparative Theoretical Analysis of Distance Estimation in Visible Light Positioning Systems. J. Light. Technol. 2016;34:854–865. doi: 10.1109/JLT.2015.2504130. DOI
Kahn J.M., Barry J.R. Wireless infrared communications. Proc. IEEE. 1997;85:265–298. doi: 10.1109/5.554222. DOI
Rahaim M., Little T.D.C. Reconciling Approaches to SNR Analysis in Optical Wireless Communications; Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC); Las Vegas, NV, USA. 19–22 March 2017; pp. 1–6.
Guimaraes D. Digital Transmission. Springer; Berlin/Heidelberg, Germany: 2009. Signals and Communication Technology.
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"