Protein Concentrations of Thrombospondin-1, MIP-1β, and S100A8 Suggest the Reflection of a Pregnancy Clock in Mid-Trimester Amniotic Fluid

. 2020 Dec ; 27 (12) : 2146-2157. [epub] 20201007

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33026626
Odkazy

PubMed 33026626
PubMed Central PMC7593301
DOI 10.1007/s43032-020-00229-z
PII: 10.1007/s43032-020-00229-z
Knihovny.cz E-zdroje

The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) spontaneous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amniocentesis, was performed in Gothenburg, Sweden, 2008-2016 (n = 1072). A panel of 27 proteins related to inflammation was analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259 days or longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear regression models were performed to analyze associations between protein concentrations and gestational duration in women with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1β, S100A8, and thrombospondin-1 were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1, MIP-1β, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm this.

Zobrazit více v PubMed

Boyle EM, Poulsen G, Field DJ, Kurinczuk JJ, Wolke D, Alfirevic Z, et al. Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study. BMJ. 2012;344:e896. doi: 10.1136/bmj.e896. PubMed DOI PMC

Moster D, Wilcox AJ, Vollset SE, Markestad T, Lie RT. Cerebral palsy among term and postterm births. JAMA. 2010;304(9):976–982. doi: 10.1001/jama.2010.1271. PubMed DOI PMC

Morken NH, Kallen K, Jacobsson B. Outcomes of preterm children according to type of delivery onset: a nationwide population-based study. Paediatr Perinat Epidemiol. 2007;21(5):458–464. doi: 10.1111/j.1365-3016.2007.00823.x. PubMed DOI

Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57. doi: 10.1016/j.jri.2008.04.002. PubMed DOI

Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–326. doi: 10.1016/j.siny.2006.05.001. PubMed DOI PMC

Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, Jacobsson B. Prediction of spontaneous preterm delivery in women with preterm labor: analysis of multiple proteins in amniotic and cervical fluids. Obstet Gynecol. 2009;114(2 Pt 1):268–277. doi: 10.1097/AOG.0b013e3181ae6a08. PubMed DOI

Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod. 2004;10(2):109–113. doi: 10.1093/molehr/gah021. PubMed DOI

Wang B, Parobchak N, Rosen T. RelB/NF-kappaB2 regulates corticotropin-releasing hormone in the human placenta. Mol Endocrinol. 2012;26(8):1356–1369. doi: 10.1210/me.2012-1035. PubMed DOI PMC

Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, Miller DE, Litterman N, Jiang PP, Russell L, Hinds DA, Hu Y, Weirauch MT, Chen X, Chavan AR, Wagner GP, Pavličev M, Nnamani MC, Maziarz J, Karjalainen MK, Rämet M, Sengpiel V, Geller F, Boyd HA, Palotie A, Momany A, Bedell B, Ryckman KK, Huusko JM, Forney CR, Kottyan LC, Hallman M, Teramo K, Nohr EA, Davey Smith G, Melbye M, Jacobsson B, Muglia LJ. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377(12):1156–1167. doi: 10.1056/NEJMoa1612665. PubMed DOI PMC

Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–666. doi: 10.1056/nejm199908263410906. PubMed DOI

McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1(5):460–463. doi: 10.1038/nm0595-460. PubMed DOI

Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–560. doi: 10.1093/humupd/dmw022. PubMed DOI PMC

Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harbor Perspect Med. 2015;5(11). 10.1101/cshperspect.a023143. PubMed PMC

Aghaeepour N, Ganio EA, McIlwain D, Tsai AS, Tingle M, Van Gassen S, et al. An immune clock of human pregnancy. Sci Immunol. 2017;2(15). 10.1126/sciimmunol.aan2946. PubMed PMC

Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, et al. A proteomic clock of human pregnancy. Am J Obstet Gynecol. 2018;218(3):347.e1–347e14. doi: 10.1016/j.ajog.2017.12.208. PubMed DOI

Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–348. doi: 10.1038/sj.jp.7211290. PubMed DOI

Apuzzio J, Chan Y, Al-Khan A, Illsley N, Kim PL, Vonhaggen S. Second-trimester amniotic fluid interleukin-10 concentration predicts preterm delivery. J Matern Fetal Neonatal Med. 2004;15(5):313–317. doi: 10.1080/14767050410001702186. PubMed DOI

Ghidini A, Jenkins CB, Spong CY, Pezzullo JC, Salafia CM, Eglinton GS. Elevated amniotic fluid interleukin-6 levels during the early second trimester are associated with greater risk of subsequent preterm delivery. Am J Reprod Immunol. 1997;37(3):227–231. doi: 10.1111/j.1600-0897.1997.tb00219.x. PubMed DOI

Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080. PubMed DOI PMC

Platt MJ. Outcomes in preterm infants. Public Health. 2014;128(5):399–403. doi: 10.1016/j.puhe.2014.03.010. PubMed DOI

Skogstrand K. Multiplex assays of inflammatory markers, a description of methods and discussion of precautions - our experience through the last ten years. Methods. 2012;56(2):204–212. doi: 10.1016/j.ymeth.2011.09.025. PubMed DOI

Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition--a review. Placenta. 2003;24 Suppl A:S33–S46. doi: 10.1053/plac.2002.0948. PubMed DOI

Hallingstrom M, Cobo T, Kacerovsky M, Skogstrand K, Hougaard DM, Holst RM, et al. The association between selected mid-trimester amniotic fluid candidate proteins and spontaneous preterm delivery. J Matern Fetal Neonatal Med. 2018;33:1–10. doi: 10.1080/14767058.2018.1497604. PubMed DOI

Combs CA, Gravett M, Garite TJ, Hickok DE, Lapidus J, Porreco R, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e1–125e15. doi: 10.1016/j.ajog.2013.11.032. PubMed DOI

Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern-Fetal Neonatal Med. 2015;28(11):1343–1359. doi: 10.3109/14767058.2014.954243. PubMed DOI PMC

Kobayashi H. The entry of fetal and amniotic fluid components into the uterine vessel circulation leads to sterile inflammatory processes during parturition. Front Immunol. 2012;3:321. doi: 10.3389/fimmu.2012.00321. PubMed DOI PMC

Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–474. doi: 10.1111/aji.12296. PubMed DOI PMC

Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–563. doi: 10.1097/01.aog.0000114989.84822.51. PubMed DOI

Kyrklund-Blomberg NB, Cnattingius S. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery. Am J Obstet Gynecol. 1998;179(4):1051–1055. doi: 10.1016/s0002-9378(98)70214-5. PubMed DOI

Kozuki N, Lee AC, Silveira MF, Sania A, Vogel JP, Adair L, et al. The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis. BMC Public Health. 2013;13 Suppl 3:S2. doi: 10.1186/1471-2458-13-s3-s2. PubMed DOI PMC

Jacobsson B, Ladfors L, Milsom I. Advanced maternal age and adverse perinatal outcome. Obstet Gynecol. 2004;104(4):727–733. doi: 10.1097/01.AOG.0000140682.63746.be. PubMed DOI

UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–d15. 10.1093/nar/gky1049. PubMed PMC

Liu X, Helenius D, Skotte L, Beaumont RN, Wielscher M, Geller F, Juodakis J, Mahajan A, Bradfield JP, Lin FTJ, Vogelezang S, Bustamante M, Ahluwalia TS, Pitkänen N, Wang CA, Bacelis J, Borges MC, Zhang G, Bedell BA, Rossi RM, Skogstrand K, Peng S, Thompson WK, Appadurai V, Lawlor DA, Kalliala I, Power C, McCarthy MI, Boyd HA, Marazita ML, Hakonarson H, Hayes MG, Scholtens DM, Rivadeneira F, Jaddoe VWV, Vinding RK, Bisgaard H, Knight BA, Pahkala K, Raitakari O, Helgeland Ø, Johansson S, Njølstad PR, Fadista J, Schork AJ, Nudel R, Miller DE, Chen X, Weirauch MT, Mortensen PB, Børglum AD, Nordentoft M, Mors O, Hao K, Ryckman KK, Hougaard DM, Kottyan LC, Pennell CE, Lyytikainen LP, Bønnelykke K, Vrijheid M, Felix JF, Lowe WL, Jr, Grant SFA, Hyppönen E, Jacobsson B, Jarvelin MR, Muglia LJ, Murray JC, Freathy RM, Werge TM, Melbye M, Buil A, Feenstra B. Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nat Commun. 2019;10(1):3927. doi: 10.1038/s41467-019-11881-8. PubMed DOI PMC

Ferrero DM, Larson J, Jacobsson B, Di Renzo GC, Norman JE, Martin JN, Jr, et al. Cross-country individual participant analysis of 4.1 million singleton births in 5 countries with very high human development index confirms known associations but provides no biologic explanation for 2/3 of all preterm births. PLoS One. 2016;11(9):e0162506. doi: 10.1371/journal.pone.0162506. PubMed DOI PMC

Hallingstrom M, Lenco J, Vajrychova M, Link M, Tambor V, Liman V, et al. Proteomic analysis of early mid-trimester amniotic fluid does not predict spontaneous preterm delivery. PLoS One. 2016;11(5):e0155164. doi: 10.1371/journal.pone.0155164. PubMed DOI PMC

Ghezzi F, Franchi M, Raio L, Di Naro E, Bossi G, D'Eril GV, et al. Elevated amniotic fluid C-reactive protein at the time of genetic amniocentesis is a marker for preterm delivery. Am J Obstet Gynecol. 2002;186(2):268–273. doi: 10.1067/mob.2002.119628. PubMed DOI

Hsu TY, Lin H, Lan KC, Ou CY, Tsai CC, Cheng BH, Yang KD, Wong YH, Hung TH, Hsiao PY, Kao HF. High interleukin-16 concentrations in the early second trimester amniotic fluid: an independent predictive marker for preterm birth. J Matern Fetal Neonatal Med. 2013;26(3):285–289. doi: 10.3109/14767058.2012.733750. PubMed DOI

Puchner K, Iavazzo C, Gourgiotis D, Boutsikou M, Baka S, Hassiakos D, Kouskouni E, Economou E, Malamitsi-Puchner A, Creatsas G. The implication of second-trimester amniotic fluid TNF-alpha, cytochrome C and cell death nucleosomes in the prediction of preterm labor and/or premature rupture of membranes. Arch Gynecol Obstet. 2012;285(1):37–43. doi: 10.1007/s00404-011-1909-7. PubMed DOI

Wenstrom KD, Andrews WW, Hauth JC, Goldenberg RL, DuBard MB, Cliver SP. Elevated second-trimester amniotic fluid interleukin-6 levels predict preterm delivery. Am J Obstet Gynecol. 1998;178(3):546–550. doi: 10.1016/S0002-9378(98)70436-3. PubMed DOI

Bamberg C, Fotopoulou C, Thiem D, Roehr CC, Dudenhausen JW, Kalache KD. Correlation of midtrimester amniotic fluid cytokine concentrations with adverse pregnancy outcome in terms of spontaneous abortion, preterm birth, and preeclampsia. J Matern Fetal Neonatal Med. 2012;25(6):812–817. doi: 10.3109/14767058.2011.587918. PubMed DOI

Kesrouani A, Chalhoub E, El Rassy E, Germanos M, Khazzaka A, Rizkallah J, et al. Prediction of preterm delivery by second trimester inflammatory biomarkers in the amniotic fluid. Cytokine. 2016;85:67–70. doi: 10.1016/j.cyto.2016.06.008. PubMed DOI

Payne MS, Feng Z, Li S, Doherty DA, Xu B, Li J, Liu L, Keelan JA, Zhou YH, Dickinson JE, Hu Y, Newnham JP. Second trimester amniotic fluid cytokine concentrations, Ureaplasma sp colonisation status and sexual activity as predictors of preterm birth in Chinese and Australian women. BMC Pregnancy Childbirth. 2014;14:340. doi: 10.1186/1471-2393-14-340. PubMed DOI PMC

Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–1507. doi: 10.1056/nejm200005183422007. PubMed DOI

Bacelis J, Juodakis J, Sengpiel V, Zhang G, Myhre R, Muglia LJ, Nilsson S, Jacobsson B. Literature-informed analysis of a genome-wide association study of gestational age in Norwegian women and children suggests involvement of inflammatory pathways. PLoS One. 2016;11(8):e0160335. doi: 10.1371/journal.pone.0160335. PubMed DOI PMC

Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56. doi: 10.1111/imr.12577. PubMed DOI PMC

Nadeau-Vallee M, Obari D, Palacios J, Brien ME, Duval C, Chemtob S, et al. Sterile inflammation and pregnancy complications: a review. Reproduction. 2016;152(6):R277–Rr92. doi: 10.1530/rep-16-0453. PubMed DOI

Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. doi: 10.1189/jlb.0306164. PubMed DOI

Romero R, Chaiworapongsa T, Alpay Savasan Z, Xu Y, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011;24(12):1444–1455. doi: 10.3109/14767058.2011.591460. PubMed DOI PMC

Baumbusch MA, Buhimschi CS, Oliver EA, Zhao G, Thung S, Rood K, Buhimschi IA. High mobility group-box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes. Cytokine. 2016;81:82–87. doi: 10.1016/j.cyto.2016.02.013. PubMed DOI PMC

Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012;25(6):558–567. doi: 10.3109/14767058.2011.599083. PubMed DOI PMC

Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. 2019;79:40–45. doi: 10.1016/j.placenta.2018.11.003. PubMed DOI PMC

Lee SM, Park KH, Jung EY, Cho SH, Ryu A. Prediction of spontaneous preterm birth in women with cervical insufficiency: comprehensive analysis of multiple proteins in amniotic fluid. J Obstet Gynaecol Res. 2016;42(7):776–783. doi: 10.1111/jog.12976. PubMed DOI

Phillips RJ, Fortier MA, Lopez BA. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation. BMC Pregnancy Childbirth. 2014;14:241. doi: 10.1186/1471-2393-14-241. PubMed DOI PMC

Ulas T, Pirr S, Fehlhaber B, Bickes MS, Loof TG, Vogl T, Mellinger L, Heinemann AS, Burgmann J, Schöning J, Schreek S, Pfeifer S, Reuner F, Völlger L, Stanulla M, von Köckritz-Blickwede M, Glander S, Barczyk-Kahlert K, von Kaisenberg CS, Friesenhagen J, Fischer-Riepe L, Zenker S, Schultze JL, Roth J, Viemann D. S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol. 2017;18(6):622–632. doi: 10.1038/ni.3745. PubMed DOI

Pirr S, Richter M, Fehlhaber B, Pagel J, Hartel C, Roth J, et al. High amounts of S100-alarmins confer antimicrobial activity on human breast milk targeting pathogens relevant in neonatal sepsis. Front Immunol. 2017;8:1822. doi: 10.3389/fimmu.2017.01822. PubMed DOI PMC

Andraweera PH, Dekker GA, Thompson SD, North RA, McCowan LM, Roberts CT. A functional variant in the thrombospondin-1 gene and the risk of small for gestational age infants. J Thromb Haemost. 2011;9(11):2221–2228. doi: 10.1111/j.1538-7836.2011.04494.x. PubMed DOI

Ulu I, Cekmez Y, Yildirim Kopuk S, Ozer N, Yogurtcuoglu EE, Angin P, et al. Maternal serum thrombospondin-1 is significantly altered in cases with established preeclampsia. J Matern Fetal Neonatal Med. 2019;32(15):2543–2546. doi: 10.1080/14767058.2018.1441279. PubMed DOI

Juodakis J, Bacelis J, Zhang G, Muglia LJ, Jacobsson B. Time-variant genetic effects as a cause for preterm birth: insights from a population of maternal cousins in Sweden. G3 (Bethesda) 2017;7(4):1349–1356. doi: 10.1534/g3.116.038612. PubMed DOI PMC

Thompson DK, Huffman KM, Kraus WE, Kraus VB. Critical appraisal of four IL-6 immunoassays. PLoS One. 2012;7(2):e30659. doi: 10.1371/journal.pone.0030659. PubMed DOI PMC

Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale discovery, for human cytokine profiling. J Immunol Methods. 2009;340(1):55–64. doi: 10.1016/j.jim.2008.10.002. PubMed DOI

Malekzadeh A, de Groot V, Beckerman H, van Oosten BW, Blankenstein MA, Teunissen C. Challenges in multi-plex and mono-plex platforms for the discovery of inflammatory profiles in neurodegenerative diseases. Methods. 2012;56(4):508–513. doi: 10.1016/j.ymeth.2012.03.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...