Protein Concentrations of Thrombospondin-1, MIP-1β, and S100A8 Suggest the Reflection of a Pregnancy Clock in Mid-Trimester Amniotic Fluid
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33026626
PubMed Central
PMC7593301
DOI
10.1007/s43032-020-00229-z
PII: 10.1007/s43032-020-00229-z
Knihovny.cz E-zdroje
- Klíčová slova
- Amniotic fluid, Gestational duration, Inflammation, Mid-trimester, Proteins,
- MeSH
- amniocentéza MeSH
- chemokin CCL4 analýza MeSH
- dospělí MeSH
- gestační stáří MeSH
- kalgranulin A analýza MeSH
- lidé MeSH
- nástup porodu MeSH
- plodová voda chemie MeSH
- prospektivní studie MeSH
- těhotenství metabolismus MeSH
- thrombospondin 1 analýza MeSH
- trimestry těhotenství * MeSH
- výsledek těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství metabolismus MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CCL4 MeSH
- kalgranulin A MeSH
- S100A8 protein, human MeSH Prohlížeč
- thrombospondin 1 MeSH
The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) spontaneous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amniocentesis, was performed in Gothenburg, Sweden, 2008-2016 (n = 1072). A panel of 27 proteins related to inflammation was analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259 days or longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear regression models were performed to analyze associations between protein concentrations and gestational duration in women with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1β, S100A8, and thrombospondin-1 were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1, MIP-1β, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm this.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Centro de Investigaciones Biomedicas en Enfermedades Raras Barcelona Spain
Department of Mathematical Sciences Chalmers University of Technology Gothenburg Sweden
Department of Obstetrics and Gynecology Sahlgrenska University Hospital Östra Gothenburg Sweden
School of Maths and Stats Victoria University of Wellington Wellington New Zealand
Zobrazit více v PubMed
Boyle EM, Poulsen G, Field DJ, Kurinczuk JJ, Wolke D, Alfirevic Z, et al. Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study. BMJ. 2012;344:e896. doi: 10.1136/bmj.e896. PubMed DOI PMC
Moster D, Wilcox AJ, Vollset SE, Markestad T, Lie RT. Cerebral palsy among term and postterm births. JAMA. 2010;304(9):976–982. doi: 10.1001/jama.2010.1271. PubMed DOI PMC
Morken NH, Kallen K, Jacobsson B. Outcomes of preterm children according to type of delivery onset: a nationwide population-based study. Paediatr Perinat Epidemiol. 2007;21(5):458–464. doi: 10.1111/j.1365-3016.2007.00823.x. PubMed DOI
Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57. doi: 10.1016/j.jri.2008.04.002. PubMed DOI
Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–326. doi: 10.1016/j.siny.2006.05.001. PubMed DOI PMC
Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, Jacobsson B. Prediction of spontaneous preterm delivery in women with preterm labor: analysis of multiple proteins in amniotic and cervical fluids. Obstet Gynecol. 2009;114(2 Pt 1):268–277. doi: 10.1097/AOG.0b013e3181ae6a08. PubMed DOI
Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod. 2004;10(2):109–113. doi: 10.1093/molehr/gah021. PubMed DOI
Wang B, Parobchak N, Rosen T. RelB/NF-kappaB2 regulates corticotropin-releasing hormone in the human placenta. Mol Endocrinol. 2012;26(8):1356–1369. doi: 10.1210/me.2012-1035. PubMed DOI PMC
Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, Miller DE, Litterman N, Jiang PP, Russell L, Hinds DA, Hu Y, Weirauch MT, Chen X, Chavan AR, Wagner GP, Pavličev M, Nnamani MC, Maziarz J, Karjalainen MK, Rämet M, Sengpiel V, Geller F, Boyd HA, Palotie A, Momany A, Bedell B, Ryckman KK, Huusko JM, Forney CR, Kottyan LC, Hallman M, Teramo K, Nohr EA, Davey Smith G, Melbye M, Jacobsson B, Muglia LJ. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377(12):1156–1167. doi: 10.1056/NEJMoa1612665. PubMed DOI PMC
Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–666. doi: 10.1056/nejm199908263410906. PubMed DOI
McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1(5):460–463. doi: 10.1038/nm0595-460. PubMed DOI
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–560. doi: 10.1093/humupd/dmw022. PubMed DOI PMC
Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harbor Perspect Med. 2015;5(11). 10.1101/cshperspect.a023143. PubMed PMC
Aghaeepour N, Ganio EA, McIlwain D, Tsai AS, Tingle M, Van Gassen S, et al. An immune clock of human pregnancy. Sci Immunol. 2017;2(15). 10.1126/sciimmunol.aan2946. PubMed PMC
Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, et al. A proteomic clock of human pregnancy. Am J Obstet Gynecol. 2018;218(3):347.e1–347e14. doi: 10.1016/j.ajog.2017.12.208. PubMed DOI
Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–348. doi: 10.1038/sj.jp.7211290. PubMed DOI
Apuzzio J, Chan Y, Al-Khan A, Illsley N, Kim PL, Vonhaggen S. Second-trimester amniotic fluid interleukin-10 concentration predicts preterm delivery. J Matern Fetal Neonatal Med. 2004;15(5):313–317. doi: 10.1080/14767050410001702186. PubMed DOI
Ghidini A, Jenkins CB, Spong CY, Pezzullo JC, Salafia CM, Eglinton GS. Elevated amniotic fluid interleukin-6 levels during the early second trimester are associated with greater risk of subsequent preterm delivery. Am J Reprod Immunol. 1997;37(3):227–231. doi: 10.1111/j.1600-0897.1997.tb00219.x. PubMed DOI
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080. PubMed DOI PMC
Platt MJ. Outcomes in preterm infants. Public Health. 2014;128(5):399–403. doi: 10.1016/j.puhe.2014.03.010. PubMed DOI
Skogstrand K. Multiplex assays of inflammatory markers, a description of methods and discussion of precautions - our experience through the last ten years. Methods. 2012;56(2):204–212. doi: 10.1016/j.ymeth.2011.09.025. PubMed DOI
Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition--a review. Placenta. 2003;24 Suppl A:S33–S46. doi: 10.1053/plac.2002.0948. PubMed DOI
Hallingstrom M, Cobo T, Kacerovsky M, Skogstrand K, Hougaard DM, Holst RM, et al. The association between selected mid-trimester amniotic fluid candidate proteins and spontaneous preterm delivery. J Matern Fetal Neonatal Med. 2018;33:1–10. doi: 10.1080/14767058.2018.1497604. PubMed DOI
Combs CA, Gravett M, Garite TJ, Hickok DE, Lapidus J, Porreco R, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e1–125e15. doi: 10.1016/j.ajog.2013.11.032. PubMed DOI
Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern-Fetal Neonatal Med. 2015;28(11):1343–1359. doi: 10.3109/14767058.2014.954243. PubMed DOI PMC
Kobayashi H. The entry of fetal and amniotic fluid components into the uterine vessel circulation leads to sterile inflammatory processes during parturition. Front Immunol. 2012;3:321. doi: 10.3389/fimmu.2012.00321. PubMed DOI PMC
Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–474. doi: 10.1111/aji.12296. PubMed DOI PMC
Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–563. doi: 10.1097/01.aog.0000114989.84822.51. PubMed DOI
Kyrklund-Blomberg NB, Cnattingius S. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery. Am J Obstet Gynecol. 1998;179(4):1051–1055. doi: 10.1016/s0002-9378(98)70214-5. PubMed DOI
Kozuki N, Lee AC, Silveira MF, Sania A, Vogel JP, Adair L, et al. The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis. BMC Public Health. 2013;13 Suppl 3:S2. doi: 10.1186/1471-2458-13-s3-s2. PubMed DOI PMC
Jacobsson B, Ladfors L, Milsom I. Advanced maternal age and adverse perinatal outcome. Obstet Gynecol. 2004;104(4):727–733. doi: 10.1097/01.AOG.0000140682.63746.be. PubMed DOI
UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–d15. 10.1093/nar/gky1049. PubMed PMC
Liu X, Helenius D, Skotte L, Beaumont RN, Wielscher M, Geller F, Juodakis J, Mahajan A, Bradfield JP, Lin FTJ, Vogelezang S, Bustamante M, Ahluwalia TS, Pitkänen N, Wang CA, Bacelis J, Borges MC, Zhang G, Bedell BA, Rossi RM, Skogstrand K, Peng S, Thompson WK, Appadurai V, Lawlor DA, Kalliala I, Power C, McCarthy MI, Boyd HA, Marazita ML, Hakonarson H, Hayes MG, Scholtens DM, Rivadeneira F, Jaddoe VWV, Vinding RK, Bisgaard H, Knight BA, Pahkala K, Raitakari O, Helgeland Ø, Johansson S, Njølstad PR, Fadista J, Schork AJ, Nudel R, Miller DE, Chen X, Weirauch MT, Mortensen PB, Børglum AD, Nordentoft M, Mors O, Hao K, Ryckman KK, Hougaard DM, Kottyan LC, Pennell CE, Lyytikainen LP, Bønnelykke K, Vrijheid M, Felix JF, Lowe WL, Jr, Grant SFA, Hyppönen E, Jacobsson B, Jarvelin MR, Muglia LJ, Murray JC, Freathy RM, Werge TM, Melbye M, Buil A, Feenstra B. Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nat Commun. 2019;10(1):3927. doi: 10.1038/s41467-019-11881-8. PubMed DOI PMC
Ferrero DM, Larson J, Jacobsson B, Di Renzo GC, Norman JE, Martin JN, Jr, et al. Cross-country individual participant analysis of 4.1 million singleton births in 5 countries with very high human development index confirms known associations but provides no biologic explanation for 2/3 of all preterm births. PLoS One. 2016;11(9):e0162506. doi: 10.1371/journal.pone.0162506. PubMed DOI PMC
Hallingstrom M, Lenco J, Vajrychova M, Link M, Tambor V, Liman V, et al. Proteomic analysis of early mid-trimester amniotic fluid does not predict spontaneous preterm delivery. PLoS One. 2016;11(5):e0155164. doi: 10.1371/journal.pone.0155164. PubMed DOI PMC
Ghezzi F, Franchi M, Raio L, Di Naro E, Bossi G, D'Eril GV, et al. Elevated amniotic fluid C-reactive protein at the time of genetic amniocentesis is a marker for preterm delivery. Am J Obstet Gynecol. 2002;186(2):268–273. doi: 10.1067/mob.2002.119628. PubMed DOI
Hsu TY, Lin H, Lan KC, Ou CY, Tsai CC, Cheng BH, Yang KD, Wong YH, Hung TH, Hsiao PY, Kao HF. High interleukin-16 concentrations in the early second trimester amniotic fluid: an independent predictive marker for preterm birth. J Matern Fetal Neonatal Med. 2013;26(3):285–289. doi: 10.3109/14767058.2012.733750. PubMed DOI
Puchner K, Iavazzo C, Gourgiotis D, Boutsikou M, Baka S, Hassiakos D, Kouskouni E, Economou E, Malamitsi-Puchner A, Creatsas G. The implication of second-trimester amniotic fluid TNF-alpha, cytochrome C and cell death nucleosomes in the prediction of preterm labor and/or premature rupture of membranes. Arch Gynecol Obstet. 2012;285(1):37–43. doi: 10.1007/s00404-011-1909-7. PubMed DOI
Wenstrom KD, Andrews WW, Hauth JC, Goldenberg RL, DuBard MB, Cliver SP. Elevated second-trimester amniotic fluid interleukin-6 levels predict preterm delivery. Am J Obstet Gynecol. 1998;178(3):546–550. doi: 10.1016/S0002-9378(98)70436-3. PubMed DOI
Bamberg C, Fotopoulou C, Thiem D, Roehr CC, Dudenhausen JW, Kalache KD. Correlation of midtrimester amniotic fluid cytokine concentrations with adverse pregnancy outcome in terms of spontaneous abortion, preterm birth, and preeclampsia. J Matern Fetal Neonatal Med. 2012;25(6):812–817. doi: 10.3109/14767058.2011.587918. PubMed DOI
Kesrouani A, Chalhoub E, El Rassy E, Germanos M, Khazzaka A, Rizkallah J, et al. Prediction of preterm delivery by second trimester inflammatory biomarkers in the amniotic fluid. Cytokine. 2016;85:67–70. doi: 10.1016/j.cyto.2016.06.008. PubMed DOI
Payne MS, Feng Z, Li S, Doherty DA, Xu B, Li J, Liu L, Keelan JA, Zhou YH, Dickinson JE, Hu Y, Newnham JP. Second trimester amniotic fluid cytokine concentrations, Ureaplasma sp colonisation status and sexual activity as predictors of preterm birth in Chinese and Australian women. BMC Pregnancy Childbirth. 2014;14:340. doi: 10.1186/1471-2393-14-340. PubMed DOI PMC
Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–1507. doi: 10.1056/nejm200005183422007. PubMed DOI
Bacelis J, Juodakis J, Sengpiel V, Zhang G, Myhre R, Muglia LJ, Nilsson S, Jacobsson B. Literature-informed analysis of a genome-wide association study of gestational age in Norwegian women and children suggests involvement of inflammatory pathways. PLoS One. 2016;11(8):e0160335. doi: 10.1371/journal.pone.0160335. PubMed DOI PMC
Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56. doi: 10.1111/imr.12577. PubMed DOI PMC
Nadeau-Vallee M, Obari D, Palacios J, Brien ME, Duval C, Chemtob S, et al. Sterile inflammation and pregnancy complications: a review. Reproduction. 2016;152(6):R277–Rr92. doi: 10.1530/rep-16-0453. PubMed DOI
Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. doi: 10.1189/jlb.0306164. PubMed DOI
Romero R, Chaiworapongsa T, Alpay Savasan Z, Xu Y, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011;24(12):1444–1455. doi: 10.3109/14767058.2011.591460. PubMed DOI PMC
Baumbusch MA, Buhimschi CS, Oliver EA, Zhao G, Thung S, Rood K, Buhimschi IA. High mobility group-box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes. Cytokine. 2016;81:82–87. doi: 10.1016/j.cyto.2016.02.013. PubMed DOI PMC
Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012;25(6):558–567. doi: 10.3109/14767058.2011.599083. PubMed DOI PMC
Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. 2019;79:40–45. doi: 10.1016/j.placenta.2018.11.003. PubMed DOI PMC
Lee SM, Park KH, Jung EY, Cho SH, Ryu A. Prediction of spontaneous preterm birth in women with cervical insufficiency: comprehensive analysis of multiple proteins in amniotic fluid. J Obstet Gynaecol Res. 2016;42(7):776–783. doi: 10.1111/jog.12976. PubMed DOI
Phillips RJ, Fortier MA, Lopez BA. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation. BMC Pregnancy Childbirth. 2014;14:241. doi: 10.1186/1471-2393-14-241. PubMed DOI PMC
Ulas T, Pirr S, Fehlhaber B, Bickes MS, Loof TG, Vogl T, Mellinger L, Heinemann AS, Burgmann J, Schöning J, Schreek S, Pfeifer S, Reuner F, Völlger L, Stanulla M, von Köckritz-Blickwede M, Glander S, Barczyk-Kahlert K, von Kaisenberg CS, Friesenhagen J, Fischer-Riepe L, Zenker S, Schultze JL, Roth J, Viemann D. S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol. 2017;18(6):622–632. doi: 10.1038/ni.3745. PubMed DOI
Pirr S, Richter M, Fehlhaber B, Pagel J, Hartel C, Roth J, et al. High amounts of S100-alarmins confer antimicrobial activity on human breast milk targeting pathogens relevant in neonatal sepsis. Front Immunol. 2017;8:1822. doi: 10.3389/fimmu.2017.01822. PubMed DOI PMC
Andraweera PH, Dekker GA, Thompson SD, North RA, McCowan LM, Roberts CT. A functional variant in the thrombospondin-1 gene and the risk of small for gestational age infants. J Thromb Haemost. 2011;9(11):2221–2228. doi: 10.1111/j.1538-7836.2011.04494.x. PubMed DOI
Ulu I, Cekmez Y, Yildirim Kopuk S, Ozer N, Yogurtcuoglu EE, Angin P, et al. Maternal serum thrombospondin-1 is significantly altered in cases with established preeclampsia. J Matern Fetal Neonatal Med. 2019;32(15):2543–2546. doi: 10.1080/14767058.2018.1441279. PubMed DOI
Juodakis J, Bacelis J, Zhang G, Muglia LJ, Jacobsson B. Time-variant genetic effects as a cause for preterm birth: insights from a population of maternal cousins in Sweden. G3 (Bethesda) 2017;7(4):1349–1356. doi: 10.1534/g3.116.038612. PubMed DOI PMC
Thompson DK, Huffman KM, Kraus WE, Kraus VB. Critical appraisal of four IL-6 immunoassays. PLoS One. 2012;7(2):e30659. doi: 10.1371/journal.pone.0030659. PubMed DOI PMC
Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale discovery, for human cytokine profiling. J Immunol Methods. 2009;340(1):55–64. doi: 10.1016/j.jim.2008.10.002. PubMed DOI
Malekzadeh A, de Groot V, Beckerman H, van Oosten BW, Blankenstein MA, Teunissen C. Challenges in multi-plex and mono-plex platforms for the discovery of inflammatory profiles in neurodegenerative diseases. Methods. 2012;56(4):508–513. doi: 10.1016/j.ymeth.2012.03.017. PubMed DOI