Optimal structural pattern for maximal compliance using topology optimization based on phasefields: Application to improve skin graft meshing efficiency
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33038044
DOI
10.1002/cnm.3405
Knihovny.cz E-zdroje
- MeSH
- kůže * MeSH
- lidé MeSH
- prospektivní studie MeSH
- transplantace kůže * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This article focuses on the problem of maximal compliance design of a hyper-elastic solid with the optimal design of human skin grafts as the application in mind. The solution method is a phasefield-based topology optimization method that supposes multiple local phasefields and a minimum distance constraint in order to prevent the phasefields from merging. Consequently, structurally disintegrating solutions such as by the coalescence of voids can be prevented. The method is used to find an optimal graft meshing pattern for a sample that is subjected to a biaxial extension of up to 150%, which corresponds to an expansion ratio of 1 : 2.25. Three prospective unitcell solutions that exhibit meta-material behavior are proposed for a periodic graft pattern. The results are a step toward improving the skin graft meshing efficiency. This work does not cover experimental validation.
Zobrazit více v PubMed
Tanner JC, Vandeput J, Olley JF. The mesh skin graft. Plast Reconstr Surg. 1964;34:287-292.
Meek C. Successful microdermagrafting using the Meek-Wall microdermatome. The American Journal of Surgery. 1958;96:557-558.
Svensjö T, Pomahac B, Yao F, Slama J, Wasif N, Eriksson E. Autologous skin transplantation: comparison of minced skin to other techniques. J Surg Res. 2002;103:19-29.
Singh M, Nuutila K, Kruse C, Dermietzel A, Caterson EJ, Eriksson E. Pixel grafting, plastic and reconstructive surgery. Pixel Grafting. 2016;137:92e-99e.
Henderson J, Arya R, Gillespie P. Skin graft meshing, over-meshing and cross-meshing. Int J Surg. 2012;10:547-550.
Gurtner P, Neligan GC. Plastic Surgery E-Book: Volume 1 Principles. London: Evier Health Sciences; 2017.
Zammit D, Kanevsky J, Meng F-Y, Dionisopoulos T. Meshed acellular dermal matrix: technique and application in implant based breast reconstruction. Plast Aesthet Res. 2016;3:254.
Lyons JL, Kagan RJ. The true meshing ratio of skin graft Meshers. J Burn Care Res. 2014;35:257-260.
Capek L, Flynn C, Molitor M, Chong S, Henys P. Graft orientation influences meshing ratio. Burns. 2018;44:1439-1445.
Jeong SH, Yoon GH, Takezawa A, Choi DH. Development of a novel phase-field method for local stress-based shape and topology optimization. Comput Struct. 2014;132:84-98.
Ospald F, Herzog R. SIMP based Topology Optimization for Injection Molding of SFRPs. 2017:1-8.
Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys. 2010;229:2697-2718.
Dedè L, Borden MJ, Hughes TJR. Isogeometric analysis for topology optimization with a phase field model. Arch Comput Method Eng. 2012;19:427-465.
Blank L, Garcke H, Sarbu L, Srisupattarawanit T, Styles V, Voigt A. Phase-field approaches to structural topology optimization. Constrained Optimization and Optimal Control for Partial Differential Equations. Basel: Springer Basel; 2012:245-256.
Blank L, Garcke H, Farshbaf-Shaker MH, Styles V. Relating phase field and sharp interface approaches to structural topology optimization. ESAIM Control Optim Calculus Variat. 2014;20:1025-1058.
Lazarov BS, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng. 2011;86:765-781.
Salazar de Troya MA, Tortorelli DA. Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidiscip Optim. 2018;58:2369-2386.
Sutula D, Kerfriden P, van Dam T, Bordas SP. Minimum energy multiple crack propagation. Part I: theory and state of the art review. Eng Fract Mech. 2018;191:205-224.
Sutula D, Kerfriden P, van Dam T, Bordas SP. Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng Fract Mech. 2018;191:225-256.
Sutula D, Kerfriden P, van Dam T, Bordas SP. Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng Fract Mech. 2018;191:257-276.
Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM. A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng. 2012;217-220:77-95.
Nguyen PV. Phase Field Modelling of Fracture. Advances in Applied Mechanics. 2018:2-5. https://doi.org/10.1016/bs.aams.2019.08.001.
Nguyen VP, Wu J-Y. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng. 2018;340:1000-1022.
Wu J-Y, Nguyen VP, Nguyen CT, Sutula D, Bordas SPA, Sinaie S. Phase field modelling of fracture. Adv Appl Mech. 2019;53.
Shen R, Waisman H, Yosibash Z, Dahan G. A novel phase field method for modeling the fracture of long bones. Int J Num Meth Biomed Eng. 2019;35:e3211.
Logg A. Automating the finite element method. Arch Comput Meth Eng. 2007;14:93-138.
Logg A, Wells GN. DOLFIN: automated finite element computing. ACM Trans Math Softw. 2010;37:1-28.
Logg A, Mardal K-A, Wells GN, et al. Automated Solution of Differential Equations by the Finite Element Method. London: Springer; 2012.
Kirby RC, Logg A. A compiler for variational forms. ACM Trans Math Softw. 2006;32:417-444.
Logg A, Wells GN, Hake J. DOLFIN: a C++/Python Finite Element Library. London: Springer. 2012.
Alnaes MS, Logg A, Ølgaard KB, Rognes ME, Wells GN. Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans Math Softw. 2014;40:1-37.
Alnaes MS. UFL: A Finite Element Form Language. Berlin, Germany: Springer. 2012.
Alnaes MS, Logg A, Mardal K-A. UFC: A Finite Element Code Generation Interface. Berlin, Germany: Springer. 2012.
Logg A, Ølgaard KB, Rognes ME, Wells GN. FFC: The FEniCS Form Compiler. Berlin, Germany: Springer. 2012.
Alnaes MS, Logg A, Mardal K-A, Skavhaug O, Langtangen HP. Unified framework for finite element assembly. Int J Comput Sci Eng. 2009;4:231-244.
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0-Fundamental algorithms for scientific computing in Python. Nature Methods. 2020; arXiv:1907.10121.17:261-272.
van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng. 2011;13:22-30.
Hunter JD. Matplotlib: a 2D graphics environment. Comp Sci Eng. 2007;9:90-95.
Perez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007;9:21-29.
Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9:10-20.
Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng. 2011;13:9-12.