Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training

. 2021 Jan ; 599 (1) : 207-229. [epub] 20201104

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33063873

KEY POINTS: Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT: Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.

Komentář v

PubMed

Zobrazit více v PubMed

Alemo Munters L, Alexanderson H, Crofford LJ & Lundberg IE (2014). New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep 16, 429.

Alemo Munters L, Dastmalchi M, Katz A, Esbjörnsson M, Loell I, Hanna B, Lidén M, Westerblad H, Lundberg IE & Alexanderson H (2013). Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res Ther 15, R83.

Alexanderson H, Munters LA, Dastmalchi M, Loell I, Heimbur̈ger M, Opava CH & Lundberg IE (2014). Resistive home exercise in patients with recent-onset polymyositis and dermatomyositis - A randomized controlled single-blinded study with a 2-year followup. J Rheumatol 41, 1124-1132.

Bajpeyi S, Myrland CK, Covington JD, Obanda D, Cefalu WT, Smith SR, Rustan AC & Ravussin E (2014). Lipid in skeletal muscle myotubes is associated to the donors’ insulin sensitivity and physical activity phenotypes. Obesity 22, 426-434.

Bertolucci F, Neri R, Dalise S, Venturi M, Rossi B & Chisari C (2014). Abnormal lactate levels in patients with polymyositis and dermatomyositis: The benefits of a specific rehabilitative program. Eur J Phys Rehabil Med 50, 161-169.

Blau HM & Webster C (1981). Isolation and characterization of human muscle cells. Proc Natl Acad Sci U S A 78, 5623-5627.

Boehler JF, Hogarth MW, Barberio MD, Novak JS, Ghimbovschi S, Brown KJ, Alemo Munters L, Loell I, Chen YW, Gordish-Dressman H, Alexanderson H, Lundberg IE & Nagaraju K (2017). Effect of endurance exercise on microRNAs in myositis skeletal muscle-A randomized controlled study. PLoS One 12, e0183292.

Boehler JF, Horn A, Novak JS, Li N, Ghimbovschi S, Lundberg IE, Alexanderson H, Alemo Munters L, Jaiswal JK & Nagaraju K (2019). Mitochondrial dysfunction and role of harakiri in the pathogenesis of myositis. J Pathol 249, 215-226.

Bourlier V, Saint-Laurent C, Louche K, Badin PM, Thalamas C, De Glisezinski I , Langin D, Sengenes C & Moro C (2013). Enhanced glucose metabolism is preserved in cultured primary myotubes from obese donors in response to exercise training. J Clin Endocrinol Metab 98, 3739-3747.

Covington JD, Myland CK, Rustan AC, Ravussin E, Smith SR & Bajpeyi S (2015). Effect of serial cell passaging in the retention of fiber type and mitochondrial content in primary human myotubes. Obesity 23, 2414-2420.

Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G & Iossa S (2015). Mitochondrial efficiency and insulin resistance. Front Physiol 5, 512.

de Souza JM, de Oliveira DS, Perin LA, Misse RG, Dos Santos AM, Gualano B, de Sá Pinto AL, Roschel H, Lima FR & Shinjo SK (2019). Feasibility, safety and efficacy of exercise training in immune-mediated necrotising myopathies: a quasi-experimental prospective study. Clin Exp Rheumatol 37, 235-241.

Devere R & Bradley WG (1975). Polymyositis: Its presentation, morbidity and mortality. Brain 98, 637-666.

Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS & Kunkel LM (2007). Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A 104, 17016-17021.

Folch J, Lees M & Sloane GH (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.

Gan Z, Fu T, Kelly DP & Vega RB (2018). Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 28, 969-980.

Gaster M (2019). The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 127, 3-26.

Gaster M, Rustan AC, Aas V & Beck-Nielsen H (2004). Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Diabetes 53, 542-548.

Henry RR, Abrams L, Nikoulina S & Ciaraldi TP (1995). Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects: Comparison using human skeletal muscle cell cultures. Diabetes 44, 936-946.

Hinkley JM, Zou K, Park S, Zheng D, Dohm GL & Houmard JA (2017). Differential acute and chronic responses in insulin action in cultured myotubes following from nondiabetic severely obese humans following gastric bypass surgery. Surg Obes Relat Dis 13, 1853-1862.

Hirai T, Ikeda K, Tsushima H, Fujishiro M, Hayakawa K, Yoshida Y, Morimoto S, Yamaji K, Takasaki Y, Takamori K, Tamura N & Sekigawa I (2018). Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis. Inflamm Regen 38, 1.

Jiang LQ, Franck N, Egan B, Sjögren RJO, Katayama M, Duque-Guimaraes D, Arner P, Zierath JR & Krook A (2013). Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 305, E1359-E1366.

Jocken JWE, Smit E, Goossens GH, Essers YPG, Van Baak MA, Mensink M, Saris WHM & Blaak EE (2008). Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific. Histochem Cell Biol 129, 535-538.

Jonckheere AI, Smeitink JAM & Rodenburg RJT (2012). Mitochondrial ATP synthase: Architecture, function and pathology. J Inherit Metab Dis 35, 211-225.

Kacerovsky-Bielesz G, Chmelik M, Ling C, Pokan R, Szendroedi J, Farukuoye M, Kacerovsky M, Schmid AI, Gruber S, Wolzt M, Moser E, Pacini G, Smekal G, Groop L & Roden M (2009). Short-term exercise training does not stimulate skeletal muscle ATP synthesis in relatives of humans with type 2 diabetes. Diabetes 58, 1333-1341.

Korshunov SS, Skulachev VP & Starkov AA (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416, 15-18.

Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, Srbecky M, Imrich R, Kyselovicova O, Belan V, Jelok I, Wolfrum C, Klimes I, Krssak M, Zemkova E, Gasperikova D, Ukropec J & Ukropcova B (2014). Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J Physiol 592, 1091-1107.

Lightfoot AP, McArdle A, Jackson MJ & Cooper RG (2015). In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 74, 1340-1346.

Ling C & Rönn T (2019). Epigenetics in human obesity and type 2 diabetes. Cell Metab 29, 1028-1044.

Lund J, Helle SA, Li Y, Løvsletten NG, Stadheim HK, Jensen J, Kase ET, Thoresen GH & Rustan AC (2018). Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep 8, 17549.

Lund J, Rustan AC, Løvsletten NG, Mudry JM, Langleite TM, Feng YZ, Stensrud C, Brubak MG, Drevon CA, Birkeland KI, Kolnes KJ, Johansen EI, Tangen DS, Stadheim HK, Gulseth HL, Krook A, Kase ET, Jensen J & Thoresen GH (2017). Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLoS One 12, e0175441.

Lundberg IE & Alexanderson H (2007). Technology Insight: Tools for research, diagnosis and clinical assessment of treatment in idiopathic inflammatory myopathies. Nat Clin Pract Rheumatol 3, 282-290.

Lundberg I, Kratz AK, Alexanderson H & Patarroyo M (2000). Decreased expression of interleukin-1α, interleukin-1β, and cell adhesion molecules in muscle tissue following corticosteroid treatment in patients with polymyositis and dermatomyositis. Arthritis Rheum 43, 336-348.

Maples JM, Brault JJ, Witczak CA, Park S, Hubal MJ, Weber TM & Houmard JA (2015). Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity. Am J Physiol Endocrinol Metab 309, E345-E356.

Massart J, Katayama M & Krook A (2016). microManaging glucose and lipid metabolism in skeletal muscle: Role of microRNAs. Biochim Biophys Acta 1861, 2130-2138.

Meex RCR, Blaak EE & van Loon LJC (2019). Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev 20, 1205-1217.

Meex RCR, Hoy AJ, Mason RM, Martin SD, McGee SL, Bruce CR & Watt MJ (2015). ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle. Am J Physiol Endocrinol Metab 308, E960-E970.

Miller FW, Lamb JA, Schmidt J & Nagaraju K (2018). Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 14, 255-268.

Minet AD & Gaster M (2010). ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects. Biochem Biophys Res Commun 402, 70-74.

Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES & Mann M (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629-640.

Munters LA, Loell I, Ossipova E, Raouf J, Dastmalchi M, Lindroos E, Chen YW, Esbjörnsson M, Korotkova M, Alexanderson H, Nagaraju K, Crofford LJ, Jakobsson PJ & Lundberg IE (2016). Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol 68, 1738-1750.

Nilsson MI, Macneil LG, Kitaoka Y, Alqarni F, Suri R, Akhtar M, Haikalis ME, Dhaliwal P, Saeed M & Tarnopolsky MA (2014). Redox state and mitochondrial respiratory chain function in skeletal muscle of LGMD2A patients. PLoS One 9, e102549.

Oddis C V. & Aggarwal R (2018). Treatment in myositis. Nat Rev Rheumatol 14, 279-289.

Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR & Mandarino LJ (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100, 8466-8471.

Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW & Shulman GI (2003). Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300, 1140-1142.

Raouf J, Idborg H, Englund P, Alexanderson H, Dastmalchi M, Jakobsson PJ, Lundberg IE & Korotkova M (2018). Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis. Arthritis Res Ther 20, 83.

Rybalka E, Timpani CA, Cooke MB, Williams AD & Hayes A (2014). Defects in mitochondrial ATP synthesis in dystrophin-deficient Mdx skeletal muscles may be caused by complex I insufficiency. PLoS One 9, e115763.

Rygiel KA, Miller J, Grady JP, Rocha MC, Taylor RW & Turnbull DM (2015). Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol 41, 288-303.

Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM, Amati F, Mackey DC, Simonsick EM, Strotmeyer ES, Coen PM, Goodpaster BH & Newman AB (2015). Skeletal muscle mitochondrial function and fatigability in older adults. Journals Gerontol Ser A Biol Sci Med Sci 70, 1379-1385.

Schakman O, Kalista S, Barbé C, Loumaye A & Thissen JP (2013). Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45, 2163-2172.

Seaborne RA, Strauss J, Cocks M, Shepherd S, O'brien TD, van Someren KA, Bell PG, Murgatroyd C, Morton JP, Stewart CE, Mein CA & Sharples AP (2018a). Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining. Sci Data 5, 180213.

Seaborne RA, Strauss J, Cocks M, Shepherd S, O'Brien TD, Van Someren KA, Bell PG, Murgatroyd C, Morton JP, Stewart CE & Sharples AP (2018b). Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep 8, 1898.

Sparks LM, Johannsen NM, Church TS, Earnest CP, Moonen-Kornips E, Moro C, Hesselink MKC, Smith SR & Schrauwen P (2013). Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab 98, 1694-1702.

Špiritović M, Oreska S, Štorkánová H, Heřmánková B, Česák P, Rathouská A, Kubinova K, Klein M, Vernerová L, Růžičková O, Mann H, Pavelka K, Šenolt L, Vencovský J & Tomčík M (2019). Effectiveness of specialized and intensive ADL training in patients with idiopathic inflammatory myopathies - preliminary results of a one-year controlled study. Ann Rheum Dis 78, A1804 (DOI: 10.1136/annrheumdis-2019-eular.1906).

Sunitha B, Gayathri N, Kumar M, Keshava Prasad TS, Nalini A, Padmanabhan B & Srinivas Bharath MM (2016). Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 138, 174-191.

Thomson DM & Winder WW (2009). AMP-activated protein kinase control of fat metabolism in skeletal muscle. Acta Physiol 196, 147-154.

Ukropcova B, McNeil M, Sereda O, De Jonge L, Xie H, Bray GA & Smith SR (2005). Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest 115, 1934-1941.

Vencovský J, Alexanderson H & Lundberg IE (2019). Idiopathic inflammatory myopathies. Rheum Dis Clin North Am 45, 569-581.

Vernerová L, Horváthová V, Kropáčková T, Vokurková M, Klein M, Tomčík M, Oreská S, Špiritović S, Štorkánová H, Heřmánková B, Kubínová K, Kryštůfková O, Mann H, Ukropec J, Ukropcová B & Vencovský J (2020). Alterations in activin A-myostatin-follistatin system associate with disease activity in inflammatory myopathies. Rheumatology 59, 2491-2501.

Yao-Borengasser A, Varma V, Coker RH, Ranganathan G, Phanavanh B, Rasouli N & Kern PA (2011). Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone. Metabolism 60, 1012-1020.

Zacharewicz E, Hesselink MKC & Schrauwen P (2018). Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med 284, 505-518.

Zilahi E, Adamecz Z, Bodoki L, Griger Z, Póliska S, Nagy-Vincze M & Dankó K (2019). Dysregulated expression profile of myomiRs in the skeletal muscle of patients with polymyositis. Electron J Int Fed Clin Chem Lab Med 30, 237-245.

Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99, 15983-15987.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...