Partially Defatted Hermetia illucens Larva Meal in Diet of Eurasian Perch (Perca fluviatilis) Juveniles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1810296
Ministry of Agriculture of the Czech Republic
PubMed
33066664
PubMed Central
PMC7602402
DOI
10.3390/ani10101876
PII: ani10101876
Knihovny.cz E-zdroje
- Klíčová slova
- alternative feed, economic and environmental sustainability, insect meal, splenic lipidosis,
- Publikační typ
- časopisecké články MeSH
Insect meal is gaining increased attention in aquafeed formulations due to high protein content and an essential amino acid profile similar to that of fishmeal. To investigate insect meal in feed for European perch Perca fluviatilis, a promising candidate for European intensive culture, we replaced standard fishmeal with partially defatted black soldier fly Hermetia illucens larva meal at rates of 0%, 20%, 40% and 60% (groups CON, H20, H40 and H60, respectively) and compared growth performance, somatic indices, hematological parameters, whole-body proximate composition and occurrence of spleen lipidosis. In addition, we assessed the economic and environmental sustainability of the tested feeds by calculating economic conversion ratio (ECR) and economic profit index (EPI). The tested groups did not differ in survival rate. Significant differences were documented in final body weight and specific growth rate, with the highest values in CON, H20 and H40. The proximate composition of fish whole-body at the end of the experiment did not differ in dry matter, crude protein or ether extract, while organic matter, ash and gross energy composition showed significant differences. The fatty acid content and n-3/n-6 ratio showed a decreasing trend with increasing H. illucens larva meal inclusion. No differences were found in hematological parameters among tested groups. The H. illucens larva meal inclusion significantly affected ECR and EPI, even at 20% inclusion level the cost of diets did not differ from the control fish meal based diet. Results suggested that 40% inclusion of H. illucens larva meal can be used successfully in standard diets for perch.
Zobrazit více v PubMed
The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for All. FAO; Rome, Italy: 2016. p. 200.
Stejskal V., Kouřil J., Policar T., Svobodová Z. Splenic lipidosis in intensively cultured perch, Perca fluviatilis L. J. Fish Dis. 2015;39:87–93. doi: 10.1111/jfd.12327. PubMed DOI
Oliva-Teles A., Enes P., Peres H. Feed and Feeding Practices in Aquaculture. Woodhead Publishing; Cambridge, UK: 2015. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish; pp. 203–233.
Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caruso G., editors. Feeds for the Aquaculture Sector: Current Situation and Alternative Sources. Springer International Publishing; Berlin, Germany: 2018. Fishmeal alternative protein sources for aquaculture feeds; pp. 1–28.
The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals. FAO; Rome, Italy: 2018.
Merrifield D.L., Olsen R.E., Myklebust R., Ringø E., El-Shemy H. Dietary Effect of Soybean (Glycine max) Products on Gut Histology and Microbiota of Fish. In: El-Shemy H., editor. Soybean and Nutrition. InTech; London, UK: 2011. pp. 231–250.
Gai F., Gasco L., Daprà F., Palmegiano G.B., Sicuro B. Enzymatic and Histological Evaluations of Gut and Liver in Rainbow Trout, Oncorhynchus mykiss, Fed with Rice Protein Concentrate-based Diets. J. World Aquac. Soc. 2012;43:218–229. doi: 10.1111/j.1749-7345.2012.00557.x. DOI
Moutinho S., Martínez-Llorens S., Tomás-Vidal A., Jover-Cerdá M., Oliva-Teles A., Peres H. Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture. 2017;468:271–277. doi: 10.1016/j.aquaculture.2016.10.024. DOI
Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. Insect meals in fish nutrition. Rev. Aquac. 2018;11:1080–1103. doi: 10.1111/raq.12281. DOI
Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals. 2019;9:170. doi: 10.3390/ani9040170. PubMed DOI PMC
Biasato I., Renna M., Gai F., Dabbou S., Meneguz M., Perona G., Martinez S., Lajusticia A.C.B., Bergagna S., Sardi L., et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019;10:12. doi: 10.1186/s40104-019-0325-x. PubMed DOI PMC
Lock E., Arsiwalla T., Waagbø R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2015;22:1202–1213. doi: 10.1111/anu.12343. DOI
Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.-J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar) Aquaculture. 2019;503:609–619. doi: 10.1016/j.aquaculture.2018.12.032. DOI
Fisher H.J., Collins S.A., Hanson C., Mason B., Colombo S.M., Anderson D.M. Black soldier fly larvae meal as a protein source in low fishmeal diets for Atlantic salmon (Salmo salar) Aquaculture. 2020;521:734978. doi: 10.1016/j.aquaculture.2020.734978. DOI
Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M., Biasato I., Biasibetti E., et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017;8:57. doi: 10.1186/s40104-017-0191-3. PubMed DOI PMC
Huyben D., Vidaković A., Hallgren S.W., Langeland M. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens) Aquaculture. 2019;500:485–491. doi: 10.1016/j.aquaculture.2018.10.034. DOI
Magalhães R., Sánchez-López A., Leal R.S., Martínez-Llorens S., Oliva-Teles A., Peres H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax) Aquaculture. 2017;476:79–85. doi: 10.1016/j.aquaculture.2017.04.021. DOI
Xiao X., Jin P., Zheng L., Cai M., Yu Z., Yu J., Zhang J. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco) Aquac. Res. 2018;49:1569–1577. doi: 10.1111/are.13611. DOI
Hu Y., Huang Y., Tang T., Zhong L., Chu W., Dai Z., Chen K., Hu Y. Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus) Aquac. Rep. 2020;17:100345. doi: 10.1016/j.aqrep.2020.100345. DOI
Kroeckel S., Harjes A.-G., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima) Aquaculture. 2012:345–352. doi: 10.1016/j.aquaculture.2012.08.041. DOI
Caimi C., Renna M., Lussiana C., Bonaldo A., Gariglio M., Meneguz M., Dabbou S., Schiavone A., Gai F., Elia A.C., et al. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture. 2020;515:734539. doi: 10.1016/j.aquaculture.2019.734539. DOI
Stejskal V., Kouřil J., Musil J., Hamackova J., Policar T. Growth pattern of all-female perch (Perca fluviatilis L.) juveniles—Is monosex perch culture beneficial? J. Appl. Ichthyol. 2009;25:432–437. doi: 10.1111/j.1439-0426.2009.01253.x. DOI
AOAC International . Official Methods of Analysis of AOAC International. 17th ed. AOAC International; Gaithersburg, MD, USA: 2000.
AOAC International . Official Methods of Analysis of AOAC International. 17th ed. AOAC International; Gaithersburg, MD, USA: 2003. 2nd revision.
Finke M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007;26:105–115. doi: 10.1002/zoo.20123. PubMed DOI
De Marco M., Martínez S., Hernandez F., Madrid J., Gai F., Rotolo L., Belforti M., Bergero D., Katz H., Dabbou S., et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed. Sci. Technol. 2015;209:211–218. doi: 10.1016/j.anifeedsci.2015.08.006. DOI
Sampels S., Zajíc T., Mraz J. Effects of frying fat and preparation on carp (Cyprinus carpio) fillet lipid composition and oxidation. Czech J. Food Sci. 2014;32:493–502. doi: 10.17221/405/2013-CJFS. DOI
Hara A., Radin N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978;90:420–426. doi: 10.1016/0003-2697(78)90046-5. PubMed DOI
Appelqvist L.Å. Rapid methods of lipid extractions and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipids contaminants. Arkiv Kemi. 1968;28:551–570.
Svobodova Z., Pravda D., Palackova J. Unified Methods of Haematological Examination of Fish. Research Institute of Fish Culture and Hydrobiology; Vodňany, Czech Republic: 1991. p. 31.
Crampton V., Nanton D., Ruohonen K., Skjervold P.-O., El Mowafi A. Demonstration of salmon farming as a net producer of fish protein and oil. Aquac. Nutr. 2010;16:437–446. doi: 10.1111/j.1365-2095.2010.00780.x. DOI
Chatvijitkul S., Boyd C.E., Davis D.A., McNevin A.A. Embodied Resources in Fish and Shrimp Feeds. J. World Aquac. Soc. 2016;48:7–19. doi: 10.1111/jwas.12360. DOI
Roffeis M., Fitches E.C., Wakefield M., Almeida J., Valada T.R.A., Devic E., Koné N., Kenis M., Nacambo S., Koko G.K.D., et al. Ex-ante life cycle impact assessment of insect based feed production in West Africa. Agric. Syst. 2020;178:102710. doi: 10.1016/j.agsy.2019.102710. DOI
Thévenot A., Rivera J.L., Wilfart A., Maillard F., Hassouna M., Kiessé T.S., Le Feon S., Aubin J. Mealworm meal for animal feed: Environmental assessment and sensitivity analysis to guide future prospects. J. Clean. Prod. 2018;170:1260–1267. doi: 10.1016/j.jclepro.2017.09.054. DOI
Heusala H., Sinkko T., Sözer N., Hytönen E., Mogensen L., Knudsen M.T. Carbon footprint and land use of oat and faba bean protein concentrates using a life cycle assessment approach. J. Clean. Prod. 2020;242:118376. doi: 10.1016/j.jclepro.2019.118376. DOI
Feedipedia: An On-Line Encyclopaedia of Animal Feeds 2017. [(accessed on 17 February 2017)]; Available online: http://www.feedipedia.org/
Dabbou S., Gai F., Biasato I., Capucchio M.T., Biasibetti E., Dezzutto D., Meneguz M., Plachà I., Gasco L., Schiavone A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018;9:49. doi: 10.1186/s40104-018-0266-9. PubMed DOI PMC
Biasato I., Gasco L., De Marco M., Renna M., Rotolo L., Dabbou S., Capucchio M., Biasibetti E., Tarantola M., Sterpone L., et al. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018;97:540–548. doi: 10.3382/ps/pex308. PubMed DOI
Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed. Sci. Technol. 2018;235:33–42. doi: 10.1016/j.anifeedsci.2017.08.012. DOI
Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss) Aquaculture. 2018;492:24–34. doi: 10.1016/j.aquaculture.2018.03.038. DOI
Danieli P.P., Lussiana C., Gasco L., Amici A., Ronchi B. The Effects of Diet Formulation on the Yield, Proximate Composition, and Fatty Acid Profile of the Black Soldier Fly (Hermetia illucens L.) Prepupae Intended for Animal Feed. Animal. 2019;9:178. doi: 10.3390/ani9040178. PubMed DOI PMC
Gasco L., Biancarosa I., Liland N.S. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem. 2020;23:67–79. doi: 10.1016/j.cogsc.2020.03.003. DOI
Bußler S., Rumpold B.A., Jander E., Rawel H.M., Schlüter O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon. 2016;2:e00218. doi: 10.1016/j.heliyon.2016.e00218. PubMed DOI PMC
Henry M., Gasco L., Piccolo G., Fountoulaki E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015;203:1–22. doi: 10.1016/j.anifeedsci.2015.03.001. DOI
Sealey W.M., Gaylord T.G., Barrows F.T., Tomberlin J.K., McGuire M.A., Ross C., St-Hilaire S. Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. J. World Aquac. Soc. 2011;42:34–45. doi: 10.1111/j.1749-7345.2010.00441.x. DOI
Shearer K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture. 1994;119:63–88. doi: 10.1016/0044-8486(94)90444-8. DOI
Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Lussiana C., Antonopoulou E., Mola P., Chatzifotisf S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed. Sci. Technol. 2016;220:34–45. doi: 10.1016/j.anifeedsci.2016.07.003. DOI
Belforti M., Gai F., Lussiana C., Renna M., Malfatto V., Rotolo L., De Marco M., Dabbou S., Schiavone A., Zoccarato I., et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015;14:4170. doi: 10.4081/ijas.2015.4170. DOI
Newton G.L., Booram C.V., Barker R.W., Hale O.M. Dried Hermetia Illucens Larvae Meal as a Supplement for Swine. J. Anim. Sci. 1977;44:395–400. doi: 10.2527/jas1977.443395x. DOI
Liland N.S., Biancarosa I., Araujo P., Biemans D., Bruckner C.G., Waagbø R., Torstensen B.E., Lock E.J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE. 2017;12:e0183188. doi: 10.1371/journal.pone.0183188. PubMed DOI PMC
Devic E., Leschen W., Murray F., Little D.C. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquac. Nutr. 2018;24:416–423. doi: 10.1111/anu.12573. DOI
Kirchgessner M., Schwarz F. Mineral content (major and trace elements) of carp (Cyprinus carpio L.) fed with different protein and energy supplies. Aquaculture. 1986;54:3–9. doi: 10.1016/0044-8486(86)90248-6. DOI
Borgogno M., Dinnella C., Iaconisi V., Fusi R., Scarpaleggia C., Schiavone A., Monteleone E., Gasco L., Parisi G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss ) feed: Effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 2017;97:3402–3411. doi: 10.1002/jsfa.8191. PubMed DOI
Belghit I., Waagbø R., Lock E.J., Liland N.S. Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr. 2018;25:343–357. doi: 10.1111/anu.12860. DOI
Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian) Aquaculture. 2016;465:43–52. doi: 10.1016/j.aquaculture.2016.08.020. DOI
Hrubec T.C., Dvm J.L.C., Smith S.A. Hematology and Plasma Chemistry Reference Intervals for Cultured Tilapia (Oreochromis Hybrid) Veter Clin. Pathol. 2000;29:7–12. doi: 10.1111/j.1939-165X.2000.tb00389.x. PubMed DOI
Ranzani-Paiva M., Ishikawa C., Das Eiras A., Felizardo N. Haemotological analysis of ‘chara’ Pseudoplatystoma fasciatum in captivity. Aqua. 2000:2–6.
Cazenave J., Wunderlin D.A., Hued A.C., Bistoni M.D.L.A. Haematological parameters in a neotropical fish, Corydoras paleatus (Jenyns, 1842) (Pisces, Callichthyidae), captured from pristine and polluted water. Hydrobiologia. 2005;537:25–33. doi: 10.1007/s10750-004-1638-z. DOI
Garcia-Abiado M.A., Mbahinzireki G., Rinchard J., Lee K.J., Dabrowski K. Effect of diets containing gossypol on blood parameters and spleen structure in tilapia, Oreochromis sp., reared in a recirculating system. J. Fish Dis. 2004;27:359–368. doi: 10.1111/j.1365-2761.2004.00551.x. PubMed DOI
Herman R.L. Effects of gossypol on rainbow trout Salmo guirdneri Richardson. J. Fish Biol. 1970;2:293–303. doi: 10.1111/j.1095-8649.1970.tb03288.x. DOI
Barros M.M., Lim C., Klesius P.H. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture. 2002;207:263–279. doi: 10.1016/S0044-8486(01)00740-2. DOI
Silva-Carrillo Y., Hernández C., Hardy R.W., González-Rodríguez B., Castillo-Vargasmachuca S. The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869) Aquaculture. 2012;364:180–185. doi: 10.1016/j.aquaculture.2012.08.007. DOI
Ogunji J.O., Kloas W., Wirth M., Neumann N., Pietsch C. Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J. Anim. Physiol. Anim. Nutr. 2008;92:511–518. doi: 10.1111/j.1439-0396.2007.00745.x. PubMed DOI
Taufek N.M., Aspani F., Muin H., Raji A.A., Razak S.A., Alias Z. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus) Fish Physiol. Biochem. 2016;42:1143–1155. doi: 10.1007/s10695-016-0204-8. PubMed DOI
Tacon A.G., Marc M. Global overview on the use of fishmeal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008;285:146–158. doi: 10.1016/j.aquaculture.2008.08.015. DOI