Process assessment, integration and optimisation: The path towards cleaner production
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33071477
PubMed Central
PMC7550104
DOI
10.1016/j.jclepro.2020.124602
PII: S0959-6526(20)34646-1
Knihovny.cz E-zdroje
- Klíčová slova
- Circular economy, Cleaner production, Energy saving, Global material cycles, Pollution reduction,
- Publikační typ
- časopisecké články MeSH
This contribution starts from the broad perspective of the global material cycles, analysing the main resource and pollution issues world-wide from the viewpoint of the disturbances to these cycles caused by human activities. The issues are analysed in the light of the currently developing COVID-19 pandemic with the resulting behavioural and business pattern changes. It has been revealed in the analysis of previous reviews that there is a need for a more comprehensive analysis of the resource and environmental impact contributions by industrial and urban processes, as well as product supply chains. The review discusses the recent key developments in the areas of Process Integration and Optimisation, the assessment and reduction of process environmental impacts, waste management and integration, green technologies. That is accompanied by a review of the papers in the current Virtual Special Issue of the Journal of Cleaner Production which is dedicated to the extended articles developed on the basis of the papers presented at the 22nd Conference on Process Integration for Energy Saving and Pollution Reduction. The follow-up analysis reveals significant advances in the efficiency and emission cleaning effects of key processes, as well as water/wastewater management and energy storage. The further analysis of the developments identifies several key areas for further research and development - including increases of the safety and robustness of supply networks for products and services, increase of the resources use efficiency of core production and resource conversion processes, as well as the emphasis on improved product and process design for minimising product wastage.
Zobrazit více v PubMed
Arioli M.S., D’Agosto M. de A., Amaral F.G., Cybis H.B.B. The evolution of city-scale GHG emissions inventory methods: a systematic review. Environ. Impact Assess. Rev. 2020;80:106316. doi: 10.1016/j.eiar.2019.106316. DOI
Avraamidou S., Baratsas S.G., Tian Y., Pistikopoulos E.N. Circular economy - a challenge and an opportunity for process systems engineering. Comput. Chem. Eng. 2020;133:106629. doi: 10.1016/j.compchemeng.2019.106629. DOI
Barton J.L. Electrification of the chemical industry. Science. 2020;368:1181–1182. doi: 10.1126/science.abb8061. PubMed DOI
Beylot A., Ménad N.-E., Seron A., Delain M., Bizouard A., Ménard Y., Villeneuve J. Economic assessment and carbon footprint of recycling rare earths from magnets: evaluation at lab scale paving the way toward industrialization. J. Ind. Ecol. 2020;24:128–137. doi: 10.1111/jiec.12943. DOI
Bhander G., Jozewicz W. Analysis of emission reduction strategies for power boilers in the US pulp and paper industry. Energy Emiss. Control Technol. 2017;5:27–37. doi: 10.2147/EECT.S139648. Macclesfield. PubMed DOI PMC
Bouwer L.M. Observed and projected impacts from extreme weather events: implications for loss and damage. In: Mechler R., Bouwer L.M., Schinko T., Surminski S., Linnerooth-Bayer J., editors. Loss and Damage from Climate Change: Concepts, Methods and Policy Options, Climate Risk Management, Policy and Governance. Springer International Publishing; Cham, Switzerland: 2019. pp. 63–82. DOI
Boyle E. Nitrogen pollution knows no bounds. Science. 2017;356:700–701. doi: 10.1126/science.aan3242. PubMed DOI
Britannica Sulfur cycle. 2020. https://www.britannica.com/science/sulfur-cycle
Bruckmeier K. Global Environmental Governance. Springer International Publishing; Cham, Switzerland: 2019. Environmental change: human modification of nature—social and environmental consequences; pp. 15–50. DOI
Cantwell M. Deep-sea currents are behind the ocean’s thickest piles of microplastics. Sci. AAAS. 2020 https://www.sciencemag.org/news/2020/06/deep-sea-currents-are-behind-ocean-s-thickest-piles-microplastics
Carneiro M.L.N.M., Gomes M.S.P. Energy, exergy, environmental and economic analysis of hybrid waste-to-energy plants. Energy Convers. Manag. 2019;179:397–417. doi: 10.1016/j.enconman.2018.10.007. DOI
Choong J., Onn C., Yusoff S., Mohd N. Life cycle assessment of waste-to-energy: energy recovery from wood waste in Malaysia. Pol. J. Environ. Stud. 2019;28:2593–2602. doi: 10.15244/pjoes/93925. DOI
Cole C., Gnanapragasam A., Cooper T., Singh J. An assessment of achievements of the WEEE Directive in promoting movement up the waste hierarchy: experiences in the UK. Waste Manag. 2019;87:417–427. doi: 10.1016/j.wasman.2019.01.046. PubMed DOI
Creative Commons Creative Commons — attribution 4.0 international — CC BY 4.0. 2020. https://creativecommons.org/licenses/by/4.0/legalcode
Creative Commons Creative Commons — attribution-NoDerivs 3.0 unported — CC BY-nd 3.0. 2020. https://creativecommons.org/licenses/by-nd/3.0/
Creative Commons Creative Commons — attribution 2.5 Denmark — CC BY 2.5 DK. 2020. https://creativecommons.org/licenses/by/2.5/dk/deed.en_GB
Conferences PRES Conference on process integration, modelling and optimisation for energy saving and pollution reduction - PRES. 2019. conferencepres.site/index.php/PRES
Čuček L., Klemeš J.J., Kravanja Z. A Review of Footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 2012;34:9–20. doi: 10.1016/j.jclepro.2012.02.036. DOI
Čuček L., Klemeš J.J., Kravanja Z. Carbon and nitrogen trade-offs in biomass energy production. Clean Technol. Environ. Policy. 2012;14:389–397. doi: 10.1007/s10098-012-0468-3. DOI
Čuček L., Klemeš J.J., Kravanja Z. Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J. Clean. Prod. 2014;71:75–86. doi: 10.1016/j.jclepro.2013.12.035. DOI
Cushman R.M., Boden T.A., Hook L.A., Jones S.B., Kaiser D.P., Kozyr A., Nelson T.R. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases. 2003. https://info.ornl.gov/sites/publications/Files/Pub57796.pdf
De Benedetto L., Klemeš J. The Environmental Performance Strategy Map: an integrated LCA approach to support the strategic decision-making process. J. Clean. Prod. 2009;17:900–906. doi: 10.1016/j.jclepro.2009.02.012. DOI
de Llobet S., Pinilla J.L., Lázaro M.J., Moliner R., Suelves I. Catalytic decomposition of biogas to produce H2-rich fuel gas and carbon nanofibers. Parametric study and characterization. HYCELTEC-2011. 2012;37:7067–7076. doi: 10.1016/j.ijhydene.2011.10.123. Int. J. Hydrog. Energy, III Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. DOI
Deng T., Li X., Wang Q., Ma T. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle. Energy. 2019;180:292–302. doi: 10.1016/j.energy.2019.05.074. DOI
Donovan M.K., Adam T.C., Shantz A.A., Speare K.E., Munsterman K.S., Rice M.M., Schmitt R.J., Holbrook S.J., Burkepile D.E. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl. Acad. Sci. Unit. States Am. 2020;117:5351–5357. doi: 10.1073/pnas.1915395117. PubMed DOI PMC
Durán I., Rubiera F., Pevida C. Vacuum swing CO2 adsorption cycles in Waste-to-Energy plants. Chem. Eng. J. 2020;382:122841. doi: 10.1016/j.cej.2019.122841. DOI
EC . Energy - European Commission; 2014. Nearly Zero-Energy Buildings.https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en
ECIU . Energy Clim. Intell. Unit; 2020. Flood Risk and the UK.https://eciu.net/analysis/briefings/climate-impacts/flood-risk-and-the-uk
EDGAR EU joint research Centre, EDGAR - emissions database for global atmospheric research. Fossil CO2 and GHG emissions of all world countries. 2020. https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019# 2019 report.
EEA National emission ceilings directive emissions data viewer 1990-2018 — European environment agency. 2020. https://www.eea.europa.eu/data-and-maps/dashboards/necd-directive-data-viewer-3
Einarsson R., Cederberg C. Is the nitrogen footprint fit for purpose? An assessment of models and proposed uses. J. Environ. Manag. 2019;240:198–208. doi: 10.1016/j.jenvman.2019.03.083. PubMed DOI
El-Halwagi M.M., Gabriel F., Harell D. Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind. Eng. Chem. Res. 2003;42:4319–4328. doi: 10.1021/ie030318a. DOI
ElectricityMap . 2020. Live CO₂ Emissions of Electricity Consumption.http://electricitymap.tmrow.co
ENTSO-E Who is ENTSO-E? 2020. https://www.entsoe.eu/about/inside-entsoe/objectives/&>
Erisman J.W., Galloway J.N., Seitzinger S., Bleeker A., Dise N.B., Petrescu A.M.R., Leach A.M., de Vries W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20130116. doi: 10.1098/rstb.2013.0116. PubMed DOI PMC
Fadzil A.F.A., Wan Alwi S.R., Manan Z., Klemeš J.J. Industrial site water minimisation via one-way centralised water reuse header. J. Clean. Prod. 2018;200:174–187. doi: 10.1016/j.jclepro.2018.07.193. DOI
Fan Y.V., Jiang P., Hemzal M., Klemeš J.J. An update of COVID-19 influence on waste management. Sci. Total Environ. 2020;754:142014. doi: 10.1016/j.scitotenv.2020.142014. PubMed DOI PMC
Fan Y.V., Nevrlẏ V., Šomplák R., Smejkalová V. The potential of carbon emission footprint reduction from biowaste in mixed municipal solid waste-EU-27. Chem. Eng. Trans. 2020;81:775–780. doi: 10.3303/CET2081130. DOI
Feng X., Zhu X.X. Combining pinch and exergy analysis for process modifications. Appl. Therm. Eng. 1997;17:249–261. doi: 10.1016/S1359-4311(96)00035-X. DOI
FloodList News Europe – storms cause flash flooding and landslides in UK, France and Italy – FloodList. 2020. floodlist.com/europe/europe-storms-august-uk-france-italy
Forman C., Muritala I.K., Pardemann R., Meyer B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016;57:1568–1579. doi: 10.1016/j.rser.2015.12.192. DOI
Gao B., Wang L., Cai Z., Huang W., Huang Y., Cui S. Spatio-temporal dynamics of nitrogen use efficiencies in the Chinese food system, 1990–2017. Sci. Total Environ. 2020;717:134861. doi: 10.1016/j.scitotenv.2019.134861. PubMed DOI
GCP Global carbon project (GCP) 2020. https://www.globalcarbonproject.org/about/index.htm&>
Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017;3 doi: 10.1126/sciadv.1700782. PubMed DOI PMC
Global Carbon Atlas CO2 emissions – global carbon Atlas. 2020. https://www.globalcarbonatlas.org/en/CO2-emissions&>
Google Scholar Search on <<“waste recycling” product substitution “footprint reduction”>>. 2020. https://scholar.google.com/&>
Government of Canada Draft science assessment of plastic pollution. 2020. https://www.canada.ca/content/dam/eccc/documents/pdf/pded/plastic-pollution/Science%20Assessment%20Plastic%20Pollution.pdf&>
Green D.W. ninth ed. McGraw-Hill Education; New York, NY, USA: 2018. Perry’s Chemical Engineers’ Handbook.
Green Technology Magazine Green technology - what is it? Green technol. 2020. https://www.green-technology.org/green-technology-what-is-it/>
Grossman G., Krueger A. National Bureau of Economic Research; Cambridge, MA, USA: 1991. Environmental Impacts of a North American Free Trade Agreement (No. W3914) DOI
Gu B., Ju X., Wu Y., Erisman J.W., Bleeker A., Reis S., Sutton M.A., Lam S.K., Smith P., Oenema O., Smith R.I., Lu X., Ye X., Chen D. Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environ. Change. 2018;48:56–66. doi: 10.1016/j.gloenvcha.2017.10.007. DOI
Guillén-Gosálbez G., You F., Galán-Martín Á., Pozo C., Grossmann I.E. Process systems engineering thinking and tools applied to sustainability problems: current landscape and future opportunities. Curr. Opin. Chem. Eng. 2019;26:170–179. doi: 10.1016/j.coche.2019.11.002. DOI
Guo Z., Zheng C., Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids. 2002;14:2007–2010. doi: 10.1063/1.1471914. DOI
Hang Y., Wang Q., Wang Y., Su B., Zhou D. Industrial SO2 emissions treatment in China: a temporal-spatial whole process decomposition analysis. J. Environ. Manag. 2019;243:419–434. doi: 10.1016/j.jenvman.2019.05.025. PubMed DOI
Harris S., Weinzettel J., Bigano A., Källmén A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. J. Clean. Prod. 2020;248:119206. doi: 10.1016/j.jclepro.2019.119206. DOI
Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M. first ed. Routledge; London, UK: 2012. The Water Footprint Assessment Manual: Setting the Global Standard. DOI
Hofste R.W., Reig P., Schleifer L. World Resources Institute; 2019. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress.https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress&> accessed 07.092020.
Hong B.H., How B.S., Lam H.L. Overview of sustainable biomass supply chain: from concept to modelling. Clean Technol. Environ. Policy. 2016;18:2173–2194. doi: 10.1007/s10098-016-1155-6. DOI
Hou X., Liu J., Zhang D. Regional sustainable development: the relationship between natural capital utilization and economic development. Sustain. Dev. 2019;27:183–195. doi: 10.1002/sd.1915. DOI
Hou J., Jin Y., Chen F. Should waste separation Be mandatory? A study on public’s response to the policies in China. Int. J. Environ. Res. Publ. Health. 2020;17:4539. doi: 10.3390/ijerph17124539. PubMed DOI PMC
Ibrahim N., Sugar L., Hoornweg D., Kennedy C. Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environ. 2012;17:223–241. doi: 10.1080/13549839.2012.660909. DOI
IEA Global EV outlook. 2020. https://www.iea.org/reports/global-ev-outlook-2020&>
ISO . International Standards Organisation Geneva; Switzerland: 2006. Environmental Management—Life Cycle Assessment: Principles and Framework. ISO14040:2006.
ISO . International Standards Organisation; Geneva, Switzerland: 2014. Environmental Management—Water Footprint—Principles, Requirements and Guidelines. ISO 14046:2014.
Jeffrey P. Water reuse Europe review 2018. 2018. https://www.water-reuse-europe.org/wp-content/uploads/2018/08/wre_review2018_final.pdf&>
Jia X., Li Z., Wang F., Foo D.C.Y., Qian Y. A new graphical representation of water footprint pinch analysis for chemical processes. Clean Technol. Environ. Policy. 2015;17:1987–1995. doi: 10.1007/s10098-015-0921-1. DOI
Jia X., Klemeš J.J., Wan Alwi S.R., Varbanov P.S. Regional water resources assessment using water scarcity pinch analysis. Resour. Conserv. Recycl. 2020;157:104749. doi: 10.1016/j.resconrec.2020.104749. DOI
Jiang Q., Qi Z., Xue L., Bukovsky M., Madramootoo C.A., Smith W. Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field. Sci. Total Environ. 2020;705:135969. doi: 10.1016/j.scitotenv.2019.135969. PubMed DOI
Jiang P., Fu X., Fan Y.V., Klemeš J.J., Chen P., Ma S., Zhang W. Spatial-temporal potential exposure risk analytics and urban sustainability impacts related to COVID-19 mitigation: a perspective from car mobility behaviour. J. Clean. Prod. 2021;279:123673. doi: 10.1016/j.jclepro.2020.123673. PubMed DOI PMC
Jiaung W.-S., Ho J.-R., Kuo C.-P. Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Tran. Part B Fundam. 2001;39:167–187. doi: 10.1080/10407790150503495. DOI
Kaste Ø., Austnes K., de Wit H.A. Streamwater responses to reduced nitrogen deposition at four small upland catchments in Norway. Ambio. 2020 doi: 10.1007/s13280-020-01347-3. PubMed DOI PMC
Kenton W. Investopedia; 2020. Green Tech Definition.https://www.investopedia.com/terms/g/green_tech.asp&>
Khalil M., Berawi M.A., Heryanto R., Rizalie A. Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew. Sustain. Energy Rev. 2019;105:323–331. doi: 10.1016/j.rser.2019.02.011. DOI
Kirschke S., Häger A., Kirschke D., Völker J. Agricultural nitrogen pollution of freshwater in Germany. The governance of sustaining a complex problem. Water. 2019;11:2450. doi: 10.3390/w11122450. DOI
Klemeš J.J., Dhole V.R., Raissi K., Perry S.J., Puigjaner L. Targeting and design methodology for reduction of fuel, power and CO2 on Total Sites. Appl. Therm. Eng. 1997;17:993–1003. doi: 10.1016/S1359-4311(96)00087-7. DOI
Klemeš J.J., Lam H.L., Foo D.C.Y. Water integration for recycling and recovery in process industry. In: Atimtay A.T., Sikdar S.K., editors. Security of Industrial Water Supply and Management, NATO Science for Peace and Security Series C: Environmental Security. Springer Netherlands; Dordrecht: 2011. pp. 1–12. DOI
Klemeš J.J., Varbanov P.S., Fan Y.V., Lam H.L. Twenty years of PRES: past, present and future process integration towards sustainability. Chem. Eng. Trans. 2017:1–24. doi: 10.3303/CET1761001. DOI
Klemeš J.J., Varbanov P.S., Walmsley T.G., Jia X. New directions in the implementation of pinch methodology (PM) Renew. Sustain. Energy Rev. 2018;98:439–468. doi: 10.1016/j.rser.2018.09.030. DOI
Klemeš J.J., Fan Y.V., Jiang P. 2020. COVID-19 pandemic facilitating energy transition opportunities. PubMed DOI PMC
Klemeš J.J., Fan Y.V., Jiang P. The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains. Energy. 2020;211:118701. doi: 10.1016/j.energy.2020.118701. PubMed DOI PMC
Klemeš J.J., Fan Y.V., Jiang P. Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources Part Recovery. Util. Environ. Eff. 2020 doi: 10.1080/15567036.2020.1801906. DOI
Klemeš J.J., Fan Y.V., Tan R.R., Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020;127:109883. doi: 10.1016/j.rser.2020.109883. PubMed DOI PMC
Krey V., Masera O., Blanford G., Bruckner T., Cooke R., Fisher-Vanden K., Haberl H., Hertwich E., Kriegler E., Mueller D., Paltsev S., Price L., Schlömer S., Ürge-Vorsatz D., van Vuuren D., Zwickel T. Annex II: metrics & methodology. In: Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlömer S., von Stechow C., Zwickel T., Minx J.C., editors. 2014. Climate Change. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, United Kingdom and New York, NY, USA: 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-ii.pdf&>
Krotscheck C., Narodoslawsky M. The Sustainable Process Index a new dimension in ecological evaluation. Ecol. Eng. 1996;6:241–258. doi: 10.1016/0925-8574(95)00060-7. DOI
Lawrence Livermore National Laboratory Energy flow charts: charting the complex relationships among energy, water, and carbon. 2020. https://flowcharts.llnl.gov/content/assets/images/energy/us/Energy_US_2018.png&>
Le Quéré C., Andrew R.M., Friedlingstein P., Sitch S., Hauck J., Pongratz J., Pickers P.A., Korsbakken J.I., Peters G.P., Canadell J.G., Arneth A., Arora V.K., Barbero L., Bastos A., Bopp L., Chevallier F., Chini L.P., Ciais P., Doney S.C., Gkritzalis T., Goll D.S., Harris I., Haverd V., Hoffman F.M., Hoppema M., Houghton R.A., Hurtt G., Ilyina T., Jain A.K., Johannessen T., Jones C.D., Kato E., Keeling R.F., Goldewijk K.K., Landschützer P., Lefèvre N., Lienert S., Liu Z., Lombardozzi D., Metzl N., Munro D.R., Nabel J.E.M.S., Nakaoka S., Neill C., Olsen A., Ono T., Patra P., Peregon A., Peters W., Peylin P., Pfeil B., Pierrot D., Poulter B., Rehder G., Resplandy L., Robertson E., Rocher M., Rödenbeck C., Schuster U., Schwinger J., Séférian R., Skjelvan I., Steinhoff T., Sutton A., Tans P.P., Tian H., Tilbrook B., Tubiello F.N., van der Laan-Luijkx I.T., van der Werf G.R., Viovy N., Walker A.P., Wiltshire A.J., Wright R., Zaehle S., Zheng B. Global carbon budget 2018. Earth Syst. Sci. Data. 2018;10:2141–2194. doi: 10.5194/essd-10-2141-2018. DOI
Leach A.M., Galloway J.N., Bleeker A., Erisman J.W., Kohn R., Kitzes J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012;1:40–66. doi: 10.1016/j.envdev.2011.12.005. DOI
Letcher T.M. Preface. In: Letcher T.M., editor. Plastic Waste and Recycling. Elsevier; London, UK: 2020. xix–xxi. DOI
Liang L., Ridoutt B.G., Lal R., Wang D., Wu W., Peng P., Hang S., Wang L., Zhao G. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019;208:285–296. doi: 10.1016/j.jclepro.2018.10.149. DOI
Liew P.Y., Theo W.L., Wan Alwi S.R., Lim J.S., Manan Z.A., Klemeš J.J., Varbanov P.S. Total Site Heat Integration planning and design for industrial, urban and renewable systems. Renew. Sustain. Energy Rev. 2017;68:964–985. doi: 10.1016/j.rser.2016.05.086. DOI
Linnhoff B., Townsend D.W., Boland D., Thomas B.E.A., Guy A.R., Marsland R.H. revised first ed. Institution of Chemical Engineers; Rugby, UK: 1994. A User Guide on Process Integration for the Efficient Use of Energy.
Liu X., Klemeš J.J., Čuček L., Varbanov P.S., Yang S., Qian Y. Export-import of virtual carbon emissions and water flows embodied in international trade. Chem. Eng. Trans. 2015;45:571–576. doi: 10.3303/CET1545096. DOI
Liu Z., Ustolin F., Spitthoff L., Lamb J.J., Gundersen T., Pollet B.G., Burheim O.S. Liquid air energy storage: analysis and prospects. In: Lamb J.J., Pollet B.G., editors. Micro-Optics and Energy: Sensors for Energy Devices. Springer International Publishing; Cham, Switzerland: 2020. pp. 115–130. DOI
Ma Y., Liu Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol. Adv. 2019;37:107414. doi: 10.1016/j.biotechadv.2019.06.013. PubMed DOI
Maji K.J., Sarkar C. Spatio-temporal variations and trends of major air pollutants in China during 2015–2018. Environ. Sci. Pollut. Res. 2020;27:33792–33808. doi: 10.1007/s11356-020-09646-8. PubMed DOI
Mayer F., Bhandari R., Gäth S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019;672:708–721. doi: 10.1016/j.scitotenv.2019.03.449. PubMed DOI
Mei S., Wang J., Tian F., Chen L., Xue X., Lu Q., Zhou Y., Zhou X. Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC-500. Sci. China Technol. Sci. 2015;58:600–611. doi: 10.1007/s11431-015-5789-0. DOI
Moustakas K., Rehan M., Loizidou M., Nizami A.S., Naqvi M. Energy and resource recovery through integrated sustainable waste management. Appl. Energy. 2020;261:114372. doi: 10.1016/j.apenergy.2019.114372. DOI
National Geographic News A whopping 91% of plastic isn’t recycled. 2018. https://www.nationalgeographic.com/news/2017/07/plastic-produced-recycling-waste-ocean-trash-debris-environment/&>
National Geographic Society Great pacific garbage Patch. 2019. https://www.nationalgeographic.org/encyclopedia/great-pacific-garbage-patch&>
Noll L.C., Leach A.M., Seufert V., Galloway J.N., Atwell B., Erisman J.W., Shade J. The nitrogen footprint of organic food in the United States. Environ. Res. Lett. 2020;15 doi: 10.1088/1748-9326/ab7029. DOI
OECD Emissions of air pollutants for the year 2017. 2020. https://stats.oecd.org/Index.aspx?DataSetCode=AIR_EMISSIONS&>
O’Kane S. Tesla’s Megapack battery is big enough to help grids handle peak demand. 2019. https://www.theverge.com/2019/7/29/20746170/tesla-megapack-battery-pge-storage-announced The Verge.
Pearce F. A controversial Russian theory claims forests don’t just make rain—they make wind. Science. 2020 doi: 10.1126/science.abd3856. DOI
Pham Phu S.T., Fujiwara T., Hoang M.G., Pham V.D., Tran M.T. Waste separation at source and recycling potential of the hotel industry in Hoi an city, Vietnam. J. Mater. Cycles Waste Manag. 2019;21:23–34. doi: 10.1007/s10163-018-0807-5. DOI
Plumer B., Popovich N. The New York Times; 2020. Emissions Are Surging Back as Countries and States Reopen.https://www.nytimes.com/interactive/2020/06/17/climate/virus-emissions-reopening.html?utm_source=Nature+Briefing&utm_campaign=2426c56bed-briefing-dy-20200617&utm_medium=email&utm_term=0_c9dfd39373-2426c56bed-44971469
Poblete I.B.S., Araujo O. de Q.F., de Medeiros J.L. Dynamic analysis of sustainable biogas-combined-cycle plant: time-varying demand and bioenergy with carbon capture and storage. Renew. Sustain. Energy Rev. 2020;131:109997. doi: 10.1016/j.rser.2020.109997. DOI
Prasad M.N.V., Shih K., editors. Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier/Academic Press; Amsterdam, The Netherlands; Boston, USA: 2016.
Reay D.S., Dentener F., Smith P., Grace J., Feely R.A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008;1:430–437. doi: 10.1038/ngeo230. DOI
Ren W., Banger K., Tao B., Yang J., Huang Y., Tian H. Global pattern and change of cropland soil organic carbon during 1901-2010: roles of climate, atmospheric chemistry, land use and management. Geogr. Sustain. 2020;1:59–69. doi: 10.1016/j.geosus.2020.03.001. DOI
Renner S. The tyee; 2020. Zero waste in the time of COVID.https://thetyee.ca/News/2020/06/05/Zero-Waste-During-COVID/
Ritchie H., Roser M. CO₂ and greenhouse gas emissions. 2017. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (Last revised in December 2019). Our World Data.
Ritchie H., Roser M. Plastic pollution - Our world in data. 2018. https://ourworldindata.org/plastic-pollution
Rojas-Downing M.M., Nejadhashemi A.P., Harrigan T., Woznicki S.A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 2017;16:145–163. doi: 10.1016/j.crm.2017.02.001. DOI
Rostampour V., Jaxa-Rozen M., Bloemendal M., Kwakkel J., Keviczky T. Aquifer Thermal Energy Storage (ATES) smart grids: large-scale seasonal energy storage as a distributed energy management solution. Appl. Energy. 2019;242:624–639. doi: 10.1016/j.apenergy.2019.03.110. DOI
Sangeetha S.K., Sivakumar V. Long-term temporal and spatial analysis of SO2 over Gauteng and Mpumalanga monitoring sites of South Africa. J. Atmospheric Sol.-Terr. Phys. 2019;191:105044. doi: 10.1016/j.jastp.2019.05.008. DOI
Santin M., Chinese D., De Angelis A., Biberacher M. Feasibility limits of using low-grade industrial waste heat in symbiotic district heating and cooling networks. Clean Technol. Environ. Policy. 2020;22:1339–1357. doi: 10.1007/s10098-020-01875-2. DOI
Sarkodie S.A., Strezov V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019;646:862–871. doi: 10.1016/j.scitotenv.2018.07.365. PubMed DOI
Sarkodie S.A., Adams S., Owusu P.A., Leirvik T., Ozturk I. Mitigating degradation and emissions in China: the role of environmental sustainability, human capital and renewable energy. Sci. Total Environ. 2020;719:137530. doi: 10.1016/j.scitotenv.2020.137530. PubMed DOI
Schaub G., Turek T. Springer International Publishing; Cham, Switzerland: 2016. Energy Flows, Material Cycles and Global Development, Environmental Science and Engineering. DOI
SCMP South China Morning Post: a ‘million mile’ battery from China could power your electric car. 2020. https://www.scmp.com/tech/big-tech/article/3087952/million-mile-battery-china-could-power-your-electric-car&>
Sharma S., Basu S., Shetti N.P., Aminabhavi T.M. Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Sci. Total Environ. 2020;713:136633. doi: 10.1016/j.scitotenv.2020.136633. PubMed DOI
Stahel W.R. Routledge, Taylor & Francis; London, UK ; New York, USA: 2019. The Circular Economy: a User’s Guide.
Stokstad E. Plastic dust is blowing into U.S. national parks—more than 1000 tons each year. Science. 2020 doi: 10.1126/science.abd2887. DOI
Tian Y., Jin Y., Li S. Modeling and optimization of inter-plant indirect heat exchanger networks by a difference evolutionary algorithm. Chem. Eng. Sci. 2020:115924. doi: 10.1016/j.ces.2020.115924. DOI
Ubando A.T., Felix C.B., Chen W.-H. Biorefineries in circular bioeconomy: a comprehensive review. Bioresour. Technol. 2020;299:122585. doi: 10.1016/j.biortech.2019.122585. PubMed DOI
UNESCO . UNESCO; Paris, France: 2017. Wastewater: the Untapped Resource, the United Nations World Water Development Report.
United Nations . United Nations Sustainable Development; 2020. The Sustainable Development Agenda.https://www.un.org/sustainabledevelopment/development-agenda&>
University of Birmingham New system uses wind turbines to defend the national grid from power cuts. 2020. https://techxplore.com/news/2020-06-turbines-defend-national-grid-power.html&>
US EPA WaterSense calculator. 2020. https://www.epa.gov/watersense/watersense-calculator&>
Utility Dive Corporate carbon reduction targets get boost with new EEI, WRI utility emission rate tool. 2020. https://www.utilitydive.com/news/corporate-carbon-reduction-targets-get-boost-with-new-eei-wri-utility-emis/580236/&>
Utility Dive California CCAs solicit info on long duration storage, with possible procurement launch this summer. 2020. https://www.utilitydive.com/news/california-ccas-solicit-info-on-long-duration-storage-with-possible-procur/579505/&>
Utility Dive “The start of something big”: California crafts pilot program to reduce building emissions. 2020. https://www.utilitydive.com/news/the-start-of-something-big-california-crafts-pilot-program-to-reduce-bui/579864/?utm_source=Sailthru&utm_medium=email&utm_campaign=Issue:%202020-06-16%20Utility%20Dive%20Newsletter%20%5Bissue:27945%5D&utm_term=Utility%20Dive
Vadén T., Lähde V., Majava A., Järvensivu P., Toivanen T., Hakala E., Eronen J.T. Decoupling for ecological sustainability: a categorisation and review of research literature. Environ. Sci. Pol. 2020;112:236–244. doi: 10.1016/j.envsci.2020.06.016. PubMed DOI PMC
Vanham D., Leip A., Galli A., Kastner T., Bruckner M., Uwizeye A., van Dijk K., Ercin E., Dalin C., Brandão M., Bastianoni S., Fang K., Leach A., Chapagain A., Van der Velde M., Sala S., Pant R., Mancini L., Monforti-Ferrario F., Carmona-Garcia G., Marques A., Weiss F., Hoekstra A.Y. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 2019;693:133642. doi: 10.1016/j.scitotenv.2019.133642. PubMed DOI PMC
Varbanov P.S., Klemeš J.J. Integration and management of renewables into Total Sites with variable supply and demand. Comput. Chem. Eng. 2011;35:1815–1826. doi: 10.1016/j.compchemeng.2011.02.009. DOI
Varbanov P.S., Walmsley T.G., Fan Y.V., Klemeš J.J., Perry S.J. Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing. Front. Chem. Sci. Eng. 2018;12:731–744. doi: 10.1007/s11705-018-1772-1. DOI
Vujanović A., Čuček L., Pahor B., Kravanja Z. Multi-objective synthesis of a company’s supply network by accounting for several environmental footprints. Process Saf. Environ. Protect. 2014;92:456–466. doi: 10.1016/j.psep.2014.03.004. DOI
Wagner P. Statista Inc. Stat. Infographics; 2018. Households Waste More Food than Estimated.https://www.statista.com/chart/15143/percieved-food-waste/&>
Wang Y.P., Smith R. Wastewater minimisation. Chem. Eng. Sci. 1994;49:981–1006. doi: 10.1016/0009-2509(94)80006-5. DOI
Wang J., Lu K., Ma L., Wang J., Dooner M., Miao S., Li J., Wang D. Overview of compressed air energy storage and technology development. Energies. 2017;10:991. doi: 10.3390/en10070991. DOI
Wiedmann T.O., Chen G., Barrett J. The concept of city carbon maps: a case study of Melbourne, Australia. J. Ind. Ecol. 2016;20:676–691. doi: 10.1111/jiec.12346. DOI
Winslow K.M., Laux S.J., Townsend T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018;129:263–277. doi: 10.1016/j.resconrec.2017.11.001. DOI
Worldometer Water use statistics - worldometer. 2020. https://www.worldometers.info/water/&>
WRI Aqueduct water risk Atlas. 2020. https://www.wri.org/applications/aqueduct/water-risk-atlas/#/?advanced=false&basemap=hydro&indicator=bws_cat&lat=62.75472592723178&lng=-665.8593750000001&mapMode=view&month=1&opacity=0.5&ponderation=DEF&predefined=false&projection=absolute&scenario=optimistic&scope=baseline&timeScale=annual&year=baseline&zoom=2
Wright L.A., Coello J., Kemp S., Williams I. Carbon footprinting for climate change management in cities. Carbon Manag. 2011;2:49–60. doi: 10.4155/cmt.10.41. DOI
Xiao X., Li F., Ye Z., Xi Z., Ma D., Yang S. Optimal configuration of energy storage for remotely delivering wind power by ultra-high voltage lines. J. Energy Storage. 2020;31:101571. doi: 10.1016/j.est.2020.101571. DOI
Xu G., Papageorgiou L.G. A mixed integer optimisation model for data classification. Comput. Ind. Eng. 2009;56:1205–1215. doi: 10.1016/j.cie.2008.07.012. DOI
Xu Q., Hu K., Yao Z., Zuo Q. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems. Ecol. Indicat. 2020;117:106634. doi: 10.1016/j.ecolind.2020.106634. DOI
Yang L., Wang Y., Wang R., Klemeš J.J., de Almeida C.M.V.B., Jin M., Zheng X., Qiao Y. Environmental-social-economic footprints of consumption and trade in the Asia-Pacific region. Nat. Commun. 2020;11:4490. doi: 10.1038/s41467-020-18338-3. PubMed DOI PMC
You S., Sonne C., Ok Y.S. COVID-19’s unsustainable waste management. Science. 2020;368 doi: 10.1126/science.abc7778. 1438–1438. PubMed DOI
Zhang D., Lv D., Yin C., Liu G. Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network. Energy. 2020;205:118070. doi: 10.1016/j.energy.2020.118070. DOI
Zhao X., Xue Y., Zhang X.-P. Fast frequency support from wind turbine systems by arresting frequency nadir close to settling frequency. IEEE Open Access J. Power Energy. 2020;7:191–202. doi: 10.1109/OAJPE.2020.2996949. DOI
Zheng Y., Yanful E.K., Bassi A.S. A review of plastic waste biodegradation. Crit. Rev. Biotechnol. 2005;25:243–250. doi: 10.1080/07388550500346359. PubMed DOI
Zirngast K., Čuček L., Zore Ž., Kravanja Z., Novak Pintarič Z. Synthesis of flexible supply networks under uncertainty applied to biogas production. Comput. Chem. Eng. 2019;129:106503. doi: 10.1016/j.compchemeng.2019.06.028. DOI