Extracellular Vesicle Isolation Yields Increased by Low-Temperature Gaseous Plasma Treatment of Polypropylene Tubes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PR-06154
Javna Agencija za Raziskovalno Dejavnost RS
PubMed
33076317
PubMed Central
PMC7602565
DOI
10.3390/polym12102363
PII: polym12102363
Knihovny.cz E-zdroje
- Klíčová slova
- atmospheric pressure plasma jets (APPJs), extracellular vesicles (EVs), nanostructures, polypropylene (PP),
- Publikační typ
- časopisecké články MeSH
Novel Extracellular Vesicles (EVs) based diagnostic techniques are promising non-invasive procedures for early stage disease detection which are gaining importance in the medical field. EVs are cell derived particles found in body liquids, especially blood, from which they are isolated for further analysis. However, techniques for their isolation are not fully standardized and require further improvement. Herein modification of polypropylene (PP) tubes by cold Atmospheric Pressure Plasma Jet (APPJ) is suggested to minimize the EVs to surface binding and thus increase EVs isolation yields. The influence of gaseous plasma treatment on surface morphology was studied by Atomic Force Microscopy (AFM), changes in surface wettability by measuring the Water Contact Angle (WCA), while surface chemical changes were analyzed by X-Ray Photoelectron Spectroscopy (XPS). Moreover, PP tubes from different manufacturers were compared. The final isolation yields of EVs were evaluated by flow cytometry. The results of this study suggest that gaseous plasma treatment is an intriguing technique to uniformly alter surface properties of PP tubes and improve EVs isolation yields up to 42%.
Zobrazit více v PubMed
Centers for Disease Control and Prevention (CDC) Trends in aging--United States and worldwide. MMWR Morb. Mortal. Wkly. Rep. 2003;52:101. PubMed
Taylor D.D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008;110:13–21. doi: 10.1016/j.ygyno.2008.04.033. PubMed DOI
Lee T.H., D’Asti E., Magnus N., Al-Nedawi K., Meehan B., Rak J. Microvesicles as mediators of intercellular communication in cancer—The emerging science of cellular ‘debris’. Semin. Immunopathol. 2011;33:455–467. doi: 10.1007/s00281-011-0250-3. PubMed DOI
Schara K., Janša V., Šuštar V., Dolinar D., Pavlič J.I., Lokar M., Kralj-Iglič V., Veranič P., Iglič A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell. Mol. Biol. Lett. 2009;14:636–656. doi: 10.2478/s11658-009-0018-0. PubMed DOI PMC
Muralidharan-Chari V., Clancy J.W., Sedgwick A., D’Souza-Schorey C. Microvesicles: Mediators of extracellular communication during cancer progression. J. Cell Sci. 2010;123:1603–1611. doi: 10.1242/jcs.064386. PubMed DOI PMC
Grange C., Tapparo M., Collino F., Vitillo L., Damasco C., Deregibus M.C., Tetta C., Bussolati B., Camussi G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71:5346–5356. doi: 10.1158/0008-5472.CAN-11-0241. PubMed DOI
Aurelian S.M., Cheta D.M., Onicescu D. Microvesicles-potential biomarkers for the interrelations atherosclerosis/type 2 diabetes mellitus. Rom. J. Morphol. Embryol. 2014;55:1035–1039. PubMed
Sluijter J.P., Verhage V., Deddens J.C., van den Akker F., Doevendans P.A. Microvesicles and exosomes for intracardiac communication. Cardiovasc. Res. 2014;102:302–311. doi: 10.1093/cvr/cvu022. PubMed DOI
Jansen F., Yang X., Proebsting S., Hoelscher M., Przybilla D., Baumann K., Schmitz T., Dolf A., Endl E., Franklin B.S. Micro RNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients With Coronary Artery Disease. J. Am. Heart Assoc. 2014;3:e001249. doi: 10.1161/JAHA.114.001249. PubMed DOI PMC
Buzas E.I., György B., Nagy G., Falus A., Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 2014;10:356–364. doi: 10.1038/nrrheum.2014.19. PubMed DOI
Meckes D.G., Raab-Traub N. Microvesicles and viral infection. J. Virol. 2011;85:12844–12854. doi: 10.1128/JVI.05853-11. PubMed DOI PMC
Verderio C., Muzio L., Turola E., Bergami A., Novellino L., Ruffini F., Riganti L., Corradini I., Francolini M., Garzetti L. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 2012;72:610–624. doi: 10.1002/ana.23627. PubMed DOI
Momen-Heravi F., Balaj L., Alian S., Mantel P.-Y., Halleck A.E., Trachtenberg A.J., Soria C.E., Oquin S., Bonebreak C.M., Saracoglu E. Current methods for the isolation of extracellular vesicles. Biol. Chem. 2013;394:1253–1262. doi: 10.1515/hsz-2013-0141. PubMed DOI PMC
Weiß N., Wente W., Müller P. Eppendorf LoBind®: Evaluation of Protein Recovery in Eppendorf Protein LoBind Tubes and Plates. Eppendorf Instrumente GmbH; Hamburg, Germany: 2010. Technical report Eppendorf Application Note 180.
Penkov O.V., Khadem M., Lim W.-S., Kim D.-E. A review of recent applications of atmospheric pressure plasma jets for materials processing. J. Coat. Technol. Res. 2015;12:225–235. doi: 10.1007/s11998-014-9638-z. DOI
Flamm D.L., Auciello O. Plasma Deposition, Treatment, and Etching of Polymers: The Treatment and Etching of Polymers. Elsevier; Amsterdam, The Netherlands: 2012.
Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons; Hoboken, NJ, USA: 2005.
Von Woedtke T., Reuter S., Masur K., Weltmann K.-D. Plasmas for medicine. Phys. Rep. 2013;530:291–320. doi: 10.1016/j.physrep.2013.05.005. DOI
Weltmann K.D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S. Plasma processes and plasma sources in medicine. Contrib. Plasma Phys. 2012;52:644–654. doi: 10.1002/ctpp.201210061. DOI
Isbary G., Stolz W., Shimizu T., Monetti R., Bunk W., Schmidt H.-U., Morfill G.E., Klämpfl T., Steffes B., Thomas H. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 2013;1:25–30. doi: 10.1016/j.cpme.2013.06.001. DOI
Schlegel J., Köritzer J., Boxhammer V. Plasma in cancer treatment. Clin. Plasma Med. 2013;1:2–7. doi: 10.1016/j.cpme.2013.08.001. DOI
Iseki S., Nakamura K., Hayashi M., Tanaka H., Kondo H., Kajiyama H., Kano H., Kikkawa F., Hori M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012;100:113702. doi: 10.1063/1.3694928. DOI
De Valence S., Tille J.-C., Chaabane C., Gurny R., Bochaton-Piallat M.-L., Walpoth B.H., Möller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur. J. Pharm. Biopharm. 2013;85:78–86. doi: 10.1016/j.ejpb.2013.06.012. PubMed DOI
Junkar I., Vesel A., Cvelbar U., Mozetič M., Strnad S. Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum. 2009;84:83–85. doi: 10.1016/j.vacuum.2009.04.011. DOI
Machala Z., Hensel K., Akishev Y. Plasma for Bio-Decontamination, Medicine and Food Security. Springer Science & Business Media; Cham, Switzerland: 2012.
Sichina W. DSC as Problem Solving Tool: Measurement of Percent Crystallinity of Thermoplastics. Perkin Elmer Instrum. PETech 2000, 40. [(accessed on 14 October 2020)]; Available online: https://www.perkinelmer.com/content/applicationnotes/app_thermalcrystallinitythermoplastics.pdf.
Šuštar V., Bedina-Zavec A., Štukelj R., Frank M., Bobojević G., Janša R., Ogorevc E., Kruljc P., Mam K., Šimunič B. Nanoparticles isolated from blood: A reflection of vesiculability of blood cells during the isolation process. Int. J. Nanomed. 2011;6:2737. PubMed PMC
Maurer-Spurej E., Pfeiler G., Maurer N., Lindner H., Glatter O., Devine D.V. Room temperature activates human blood platelets. Lab. Investig. 2001;81:581–592. doi: 10.1038/labinvest.3780267. PubMed DOI
Kwon O.-J., Tang S., Myung S.-W., Lu N., Choi H.-S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI
Cheng C., Liye Z., Zhan R.-J. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf. Coat. Technol. 2006;200:6659–6665. doi: 10.1016/j.surfcoat.2005.09.033. DOI
Kostov K.G., Nishime T.M.C., Castro A.H.R., Toth A., Hein L.R.d.O. Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 2014;314:367–375. doi: 10.1016/j.apsusc.2014.07.009. DOI
Sarani A., Nikiforov A.Y., De Geyter N., Morent R., Leys C. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci. 2011;257:8737–8741. doi: 10.1016/j.apsusc.2011.05.071. DOI
Kwon O.-J., Myung S.-W., Lee C.-S., Choi H.-S. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interface Sci. 2006;295:409–416. doi: 10.1016/j.jcis.2005.11.007. PubMed DOI
Lu X., Wu S. On the active species concentrations of atmospheric pressure nonequilibrium plasma jets. IEEE Trans. Plasma Sci. 2013;41:2313–2326. doi: 10.1109/TPS.2013.2268579. DOI
Beamson G., Briggs D. High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules. Mol. Phys. 1992;76:919–936. doi: 10.1080/00268979200101761. DOI
Matthews S.R., Hwang Y.J., McCord M.G., Bourham M.A. Investigation into etching mechanism of polyethylene terephthalate (PET) films treated in helium and oxygenated-helium atmospheric plasmas. J. Appl. Polym. Sci. 2004;94:2383–2389. doi: 10.1002/app.21162. DOI
Junkar I., Cvelbar U., Vesel A., Hauptman N., Mozetič M. The role of crystallinity on polymer interaction with oxygen plasma. Plasma Process. Polym. 2009;6:667–675. doi: 10.1002/ppap.200900034. DOI
Wang C., He X. Polypropylene surface modification model in atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2006;201:3377–3384. doi: 10.1016/j.surfcoat.2006.07.205. DOI
Akishev Y.S., Grushin M., Monich A., Napartovich A., Trushkin N. One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energy Chem. 2003;37:286–291. doi: 10.1023/A:1025744611605. DOI