Extracellular Vesicle Isolation Yields Increased by Low-Temperature Gaseous Plasma Treatment of Polypropylene Tubes

. 2020 Oct 15 ; 12 (10) : . [epub] 20201015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33076317

Grantová podpora
PR-06154 Javna Agencija za Raziskovalno Dejavnost RS

Novel Extracellular Vesicles (EVs) based diagnostic techniques are promising non-invasive procedures for early stage disease detection which are gaining importance in the medical field. EVs are cell derived particles found in body liquids, especially blood, from which they are isolated for further analysis. However, techniques for their isolation are not fully standardized and require further improvement. Herein modification of polypropylene (PP) tubes by cold Atmospheric Pressure Plasma Jet (APPJ) is suggested to minimize the EVs to surface binding and thus increase EVs isolation yields. The influence of gaseous plasma treatment on surface morphology was studied by Atomic Force Microscopy (AFM), changes in surface wettability by measuring the Water Contact Angle (WCA), while surface chemical changes were analyzed by X-Ray Photoelectron Spectroscopy (XPS). Moreover, PP tubes from different manufacturers were compared. The final isolation yields of EVs were evaluated by flow cytometry. The results of this study suggest that gaseous plasma treatment is an intriguing technique to uniformly alter surface properties of PP tubes and improve EVs isolation yields up to 42%.

Zobrazit více v PubMed

Centers for Disease Control and Prevention (CDC) Trends in aging--United States and worldwide. MMWR Morb. Mortal. Wkly. Rep. 2003;52:101. PubMed

Taylor D.D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008;110:13–21. doi: 10.1016/j.ygyno.2008.04.033. PubMed DOI

Lee T.H., D’Asti E., Magnus N., Al-Nedawi K., Meehan B., Rak J. Microvesicles as mediators of intercellular communication in cancer—The emerging science of cellular ‘debris’. Semin. Immunopathol. 2011;33:455–467. doi: 10.1007/s00281-011-0250-3. PubMed DOI

Schara K., Janša V., Šuštar V., Dolinar D., Pavlič J.I., Lokar M., Kralj-Iglič V., Veranič P., Iglič A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell. Mol. Biol. Lett. 2009;14:636–656. doi: 10.2478/s11658-009-0018-0. PubMed DOI PMC

Muralidharan-Chari V., Clancy J.W., Sedgwick A., D’Souza-Schorey C. Microvesicles: Mediators of extracellular communication during cancer progression. J. Cell Sci. 2010;123:1603–1611. doi: 10.1242/jcs.064386. PubMed DOI PMC

Grange C., Tapparo M., Collino F., Vitillo L., Damasco C., Deregibus M.C., Tetta C., Bussolati B., Camussi G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71:5346–5356. doi: 10.1158/0008-5472.CAN-11-0241. PubMed DOI

Aurelian S.M., Cheta D.M., Onicescu D. Microvesicles-potential biomarkers for the interrelations atherosclerosis/type 2 diabetes mellitus. Rom. J. Morphol. Embryol. 2014;55:1035–1039. PubMed

Sluijter J.P., Verhage V., Deddens J.C., van den Akker F., Doevendans P.A. Microvesicles and exosomes for intracardiac communication. Cardiovasc. Res. 2014;102:302–311. doi: 10.1093/cvr/cvu022. PubMed DOI

Jansen F., Yang X., Proebsting S., Hoelscher M., Przybilla D., Baumann K., Schmitz T., Dolf A., Endl E., Franklin B.S. Micro RNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients With Coronary Artery Disease. J. Am. Heart Assoc. 2014;3:e001249. doi: 10.1161/JAHA.114.001249. PubMed DOI PMC

Buzas E.I., György B., Nagy G., Falus A., Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 2014;10:356–364. doi: 10.1038/nrrheum.2014.19. PubMed DOI

Meckes D.G., Raab-Traub N. Microvesicles and viral infection. J. Virol. 2011;85:12844–12854. doi: 10.1128/JVI.05853-11. PubMed DOI PMC

Verderio C., Muzio L., Turola E., Bergami A., Novellino L., Ruffini F., Riganti L., Corradini I., Francolini M., Garzetti L. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 2012;72:610–624. doi: 10.1002/ana.23627. PubMed DOI

Momen-Heravi F., Balaj L., Alian S., Mantel P.-Y., Halleck A.E., Trachtenberg A.J., Soria C.E., Oquin S., Bonebreak C.M., Saracoglu E. Current methods for the isolation of extracellular vesicles. Biol. Chem. 2013;394:1253–1262. doi: 10.1515/hsz-2013-0141. PubMed DOI PMC

Weiß N., Wente W., Müller P. Eppendorf LoBind®: Evaluation of Protein Recovery in Eppendorf Protein LoBind Tubes and Plates. Eppendorf Instrumente GmbH; Hamburg, Germany: 2010. Technical report Eppendorf Application Note 180.

Penkov O.V., Khadem M., Lim W.-S., Kim D.-E. A review of recent applications of atmospheric pressure plasma jets for materials processing. J. Coat. Technol. Res. 2015;12:225–235. doi: 10.1007/s11998-014-9638-z. DOI

Flamm D.L., Auciello O. Plasma Deposition, Treatment, and Etching of Polymers: The Treatment and Etching of Polymers. Elsevier; Amsterdam, The Netherlands: 2012.

Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons; Hoboken, NJ, USA: 2005.

Von Woedtke T., Reuter S., Masur K., Weltmann K.-D. Plasmas for medicine. Phys. Rep. 2013;530:291–320. doi: 10.1016/j.physrep.2013.05.005. DOI

Weltmann K.D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S. Plasma processes and plasma sources in medicine. Contrib. Plasma Phys. 2012;52:644–654. doi: 10.1002/ctpp.201210061. DOI

Isbary G., Stolz W., Shimizu T., Monetti R., Bunk W., Schmidt H.-U., Morfill G.E., Klämpfl T., Steffes B., Thomas H. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 2013;1:25–30. doi: 10.1016/j.cpme.2013.06.001. DOI

Schlegel J., Köritzer J., Boxhammer V. Plasma in cancer treatment. Clin. Plasma Med. 2013;1:2–7. doi: 10.1016/j.cpme.2013.08.001. DOI

Iseki S., Nakamura K., Hayashi M., Tanaka H., Kondo H., Kajiyama H., Kano H., Kikkawa F., Hori M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012;100:113702. doi: 10.1063/1.3694928. DOI

De Valence S., Tille J.-C., Chaabane C., Gurny R., Bochaton-Piallat M.-L., Walpoth B.H., Möller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur. J. Pharm. Biopharm. 2013;85:78–86. doi: 10.1016/j.ejpb.2013.06.012. PubMed DOI

Junkar I., Vesel A., Cvelbar U., Mozetič M., Strnad S. Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum. 2009;84:83–85. doi: 10.1016/j.vacuum.2009.04.011. DOI

Machala Z., Hensel K., Akishev Y. Plasma for Bio-Decontamination, Medicine and Food Security. Springer Science & Business Media; Cham, Switzerland: 2012.

Sichina W. DSC as Problem Solving Tool: Measurement of Percent Crystallinity of Thermoplastics. Perkin Elmer Instrum. PETech 2000, 40. [(accessed on 14 October 2020)]; Available online: https://www.perkinelmer.com/content/applicationnotes/app_thermalcrystallinitythermoplastics.pdf.

Šuštar V., Bedina-Zavec A., Štukelj R., Frank M., Bobojević G., Janša R., Ogorevc E., Kruljc P., Mam K., Šimunič B. Nanoparticles isolated from blood: A reflection of vesiculability of blood cells during the isolation process. Int. J. Nanomed. 2011;6:2737. PubMed PMC

Maurer-Spurej E., Pfeiler G., Maurer N., Lindner H., Glatter O., Devine D.V. Room temperature activates human blood platelets. Lab. Investig. 2001;81:581–592. doi: 10.1038/labinvest.3780267. PubMed DOI

Kwon O.-J., Tang S., Myung S.-W., Lu N., Choi H.-S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI

Cheng C., Liye Z., Zhan R.-J. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf. Coat. Technol. 2006;200:6659–6665. doi: 10.1016/j.surfcoat.2005.09.033. DOI

Kostov K.G., Nishime T.M.C., Castro A.H.R., Toth A., Hein L.R.d.O. Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 2014;314:367–375. doi: 10.1016/j.apsusc.2014.07.009. DOI

Sarani A., Nikiforov A.Y., De Geyter N., Morent R., Leys C. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci. 2011;257:8737–8741. doi: 10.1016/j.apsusc.2011.05.071. DOI

Kwon O.-J., Myung S.-W., Lee C.-S., Choi H.-S. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interface Sci. 2006;295:409–416. doi: 10.1016/j.jcis.2005.11.007. PubMed DOI

Lu X., Wu S. On the active species concentrations of atmospheric pressure nonequilibrium plasma jets. IEEE Trans. Plasma Sci. 2013;41:2313–2326. doi: 10.1109/TPS.2013.2268579. DOI

Beamson G., Briggs D. High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules. Mol. Phys. 1992;76:919–936. doi: 10.1080/00268979200101761. DOI

Matthews S.R., Hwang Y.J., McCord M.G., Bourham M.A. Investigation into etching mechanism of polyethylene terephthalate (PET) films treated in helium and oxygenated-helium atmospheric plasmas. J. Appl. Polym. Sci. 2004;94:2383–2389. doi: 10.1002/app.21162. DOI

Junkar I., Cvelbar U., Vesel A., Hauptman N., Mozetič M. The role of crystallinity on polymer interaction with oxygen plasma. Plasma Process. Polym. 2009;6:667–675. doi: 10.1002/ppap.200900034. DOI

Wang C., He X. Polypropylene surface modification model in atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2006;201:3377–3384. doi: 10.1016/j.surfcoat.2006.07.205. DOI

Akishev Y.S., Grushin M., Monich A., Napartovich A., Trushkin N. One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energy Chem. 2003;37:286–291. doi: 10.1023/A:1025744611605. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...