Polycyclizations of Ketoesters: Synthesis of Complex Tricycles with up to Five Stereogenic Centers from Available Starting Materials

. 2020 Nov 06 ; 22 (21) : 8387-8391. [epub] 20201020

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33079554

Here we present a polycyclization of oxotriphenylhexanoates. The polycyclization is governed by electronic effects, and three major synthetic paths have been established leading to stereochemically complex tricyclic frameworks with up to five stereogenic centers. The method is compatible with an array of functional groups, allowing pharmacophoric elements to be introduced post cyclization.

Zobrazit více v PubMed

Gates M.; Tschudi G. J. Am. Chem. Soc. 1956, 78, 1380–1393. 10.1021/ja01588a033. DOI

Nicolaou K. C.; Yang Z.; Liu J. J.; Ueno H.; Nantermet P. G.; Guy R. K.; Claiborne C. F.; Renaud J.; Couladouros E. A.; Paulvannan K.; Sorensen E. J. Nature 1994, 367, 630–634. 10.1038/367630a0. PubMed DOI

Holton R. A.; Somoza C.; Kim H. B.; Liang F.; Biediger R. J.; Boatman P. D.; Shindo M.; Smith C. C.; Kim S. J. Am. Chem. Soc. 1994, 116, 1597–1598. 10.1021/ja00083a066. DOI

Holton R. A.; Kim H. B.; Somoza C.; Liang F.; Biediger R. J.; Boatman P. D.; Shindo M.; Smith C. C.; Kim S. J. Am. Chem. Soc. 1994, 116, 1599–1600. 10.1021/ja00083a067. DOI

Woodward R. B.; Cava M. P.; Ollis W. D.; Hunger A.; Daeniker H. U.; Schenker K. J. Am. Chem. Soc. 1954, 76, 4749–4751. 10.1021/ja01647a088. DOI

Gershenzon J.; Dudareva N. Nat. Chem. Biol. 2007, 3, 408–414. 10.1038/nchembio.2007.5. PubMed DOI

Hu P.; Chi H. M.; DeBacker K. C.; Gong X.; Keim J. H.; Hsu I. T.; Snyder S. A. Nature 2019, 569, 703–707. 10.1038/s41586-019-1179-2. PubMed DOI PMC

Fang Z.; Song Y. n.; Zhan P.; Zhang Q.; Liu X. Future Med. Chem. 2014, 6, 885–901. 10.4155/fmc.14.50. PubMed DOI

Schreiber S. L. Science 2000, 287, 1964–1969. 10.1126/science.287.5460.1964. PubMed DOI

Galloway W. R. J. D.; Isidro-Llobet A.; Spring D. R. Nat. Commun. 2010, 1, 80.10.1038/ncomms1081. PubMed DOI

O’ Connor C. J.; Beckmann H. S. G.; Spring D. R. Chem. Soc. Rev. 2012, 41, 4444–4456. 10.1039/c2cs35023h. PubMed DOI

Kuznetsov D. M.; Kutateladze A. G. J. Am. Chem. Soc. 2017, 139, 16584–16590. 10.1021/jacs.7b07598. PubMed DOI

Plesniak M. P.; Garduño-Castro M. H.; Lenz P.; Just-Baringo X.; Procter D. J. Nat. Commun. 2018, 9, 4802.10.1038/s41467-018-07194-x. PubMed DOI PMC

Corey E. J.; Desai M. C.; Engler T. A. J. Am. Chem. Soc. 1985, 107, 4339–4341. 10.1021/ja00300a049. DOI

Bonjoch J.; Solé D. Chem. Rev. 2000, 100, 3455–3482. 10.1021/cr9902547. PubMed DOI

Lee H.; Kang T.; Lee H.-Y. Angew. Chem., Int. Ed. 2017, 56, 8254–8257. 10.1002/anie.201704492. PubMed DOI

Nicolaou K. C.; Sorensen E. J.. Classics in Total Synthesis: Targets, Strategies, Methods; Wiley, 1996.

Tietze L. F. Chem. Rev. 1996, 96, 115–136. 10.1021/cr950027e. PubMed DOI

Tietze L. F.; Brasche G.; Gericke K. M.. Domino Reactions in Organic Synthesis; Wiley-VCH, 2006.

Johnson W. S. Angew. Chem., Int. Ed. Engl. 1976, 15, 9–17. 10.1002/anie.197600091. PubMed DOI

Anderson E. A. Org. Biomol. Chem. 2011, 9, 3997–4006. 10.1039/c1ob05212h. PubMed DOI

Ardkhean R.; Caputo D. F. J.; Morrow S. M.; Shi H.; Xiong Y.; Anderson E. A. Chem. Soc. Rev. 2016, 45, 1557–1569. 10.1039/C5CS00105F. PubMed DOI

Powers Z.; Scharf A.; Cheng A.; Yang F.; Himmelbauer M.; Mitsuhashi T.; Barra L.; Taniguchi Y.; Kikuchi T.; Fujita M.; Abe I.; Porco J. A. Jr Angew. Chem., Int. Ed. 2019, 58, 16141–16146. 10.1002/anie.201910710. PubMed DOI PMC

Shishido K.; Shitara E.; Komatsu H.; Hiroya K.; Fukumoto K.; Kametani T. J. Org. Chem. 1986, 51, 3007–3011. 10.1021/jo00365a029. DOI

Danishefsky S. J.; DeNinno M. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 15–23. 10.1002/anie.198700151. DOI

Mikami K.; Takahashi K.; Nakai T. J. Am. Chem. Soc. 1990, 112, 4035–4037. 10.1021/ja00166a049. DOI

Knight S. D.; Overman L. E.; Pairaudeau G. J. Am. Chem. Soc. 1993, 115, 9293–9294. 10.1021/ja00073a057. DOI

Angle S. R.; Fevig J. M.; Knight S. D.; Marquis R. W.; Overman L. E. J. Am. Chem. Soc. 1993, 115, 3966–3976. 10.1021/ja00063a016. DOI

Denmark S. E.; Thorarensen A. J. Org. Chem. 1994, 59, 5672–5680. 10.1021/jo00098a027. DOI

Mikami K.; Takahashi K.; Nakai T.; Uchimaru T. J. Am. Chem. Soc. 1994, 116, 10948–10954. 10.1021/ja00103a009. DOI

Deng W.; Overman L. E. J. Am. Chem. Soc. 1994, 116, 11241–11250. 10.1021/ja00104a005. DOI

Poulin J.; Grisé-Bard C. M.; Barriault L. Chem. Soc. Rev. 2009, 38, 3092–3101. 10.1039/b819798a. PubMed DOI

Jacobsen E. J.; Levin J.; Overman L. E. J. Am. Chem. Soc. 1988, 110, 4329–4336. 10.1021/ja00221a037. DOI

O’Hagan D. Nat. Prod. Rep. 1989, 6, 205–219. 10.1039/np9890600205. PubMed DOI

Bartlett W. R.; Johnson W. S.; Plummer M. S.; Small V. R. J. Org. Chem. 1990, 55, 2215–2224. 10.1021/jo00294a043. DOI

Snowden R. L.; Eichenberger J. C.; Linder S. M.; Sonnay P.; Vial C.; Schulte-Elte K. H. J. Org. Chem. 1992, 57, 955–960. 10.1021/jo00029a031. DOI

Fish P. V.; Johnson W. S. J. Org. Chem. 1994, 59, 2324–2335. 10.1021/jo00088a011. DOI

Beifuss U.; Ledderhose S. Synlett 1995, 1995, 938–940. 10.1055/s-1995-5114. DOI

Koert U. Angew. Chem., Int. Ed. Engl. 1995, 34, 298–300. 10.1002/anie.199502981. DOI

Barrett T. N.; Barrett A. G. M. J. Am. Chem. Soc. 2014, 136, 17013–17015. 10.1021/ja511534x. PubMed DOI

Dombroski M. A.; Kates S. A.; Snider B. B. J. Am. Chem. Soc. 1990, 112, 2759–2767. 10.1021/ja00163a044. DOI

Porco J. A.; Schoenen F. J.; Stout T. J.; Clardy J.; Schreiber S. L. J. Am. Chem. Soc. 1990, 112, 7410–7411. 10.1021/ja00176a060. DOI

Dauben W. G.; Dinges J.; Smith T. C. J. Org. Chem. 1993, 58, 7635–7637. 10.1021/jo00079a004. DOI

Boyer F.-D.; Hanna I.; Ricard L. Org. Lett. 2004, 6, 1817–1820. 10.1021/ol049452x. PubMed DOI

Pinto A.; Jia Y.; Neuville L.; Zhu J. Chem. - Eur. J. 2007, 13, 961–967. 10.1002/chem.200601016. PubMed DOI

Mai W.-P.; Sun G.-C.; Wang J.-T.; Song G.; Mao P.; Yang L.-R.; Yuan J.-W.; Xiao Y.-M.; Qu L.-B. J. Org. Chem. 2014, 79, 8094–8102. 10.1021/jo501301t. PubMed DOI

Hao T.-T.; Liang H.-R.; Ou-Yang Y.-H.; Yin C.-Z.; Zheng X.-L.; Yuan M.-L.; Li R.-X.; Fu H.-Y.; Chen H. J. Org. Chem. 2018, 83, 4441–4454. 10.1021/acs.joc.8b00150. PubMed DOI

Pellissier H. Adv. Synth. Catal. 2019, 361, 1733–1755. 10.1002/adsc.201801371. DOI

Corey E. J.; Kang M. C. J. Am. Chem. Soc. 1984, 106, 5384–5385. 10.1021/ja00330a076. DOI

Fevig T. L.; Elliott R. L.; Curran D. P. J. Am. Chem. Soc. 1988, 110, 5064–5067. 10.1021/ja00223a026. DOI

Curran D. P.; Liu H. J. Am. Chem. Soc. 1992, 114, 5863–5864. 10.1021/ja00040a060. DOI

Hitchcock S. A.; Pattenden G. Tetrahedron Lett. 1992, 33, 4843–4846. 10.1016/S0040-4039(00)61300-X. DOI

Chen L.; Gill G. B.; Pattenden G. Tetrahedron Lett. 1994, 35, 2593–2596. 10.1016/S0040-4039(00)77180-2. DOI

Takahashi T.; Katouda W.; Sakamoto Y.; Tomida S.; Yamada H. Tetrahedron Lett. 1995, 36, 2273–2276. 10.1016/0040-4039(95)00269-I. DOI

Sebren L. J.; Devery J. J.; Stephenson C. R. J. ACS Catal. 2014, 4, 703–716. 10.1021/cs400995r. PubMed DOI PMC

Plesniak M. P.; Huang H.-M.; Procter D. J. Nat. Rev. Chem. 2017, 1, 0077.10.1038/s41570-017-0077. DOI

Wang X.; Xia D.; Qin W.; Zhou R.; Zhou X.; Zhou Q.; Liu W.; Dai X.; Wang H.; Wang S.; Tan L.; Zhang D.; Song H.; Liu X.-Y.; Qin Y. Chem. 2017, 2, 803–816. 10.1016/j.chempr.2017.04.007. DOI

Hung K.; Hu X.; Maimone T. J. Nat. Prod. Rep. 2018, 35, 174–202. 10.1039/C7NP00065K. PubMed DOI PMC

Nair V.; Babu B. P.; Vellalath S.; Varghese V.; Raveendran A. E.; Suresh E. Org. Lett. 2009, 11, 2507–2510. 10.1021/ol900571x. PubMed DOI

Ta L.; Axelsson A.; Bijl J.; Haukka M.; Sunden H. Chem. - Eur. J. 2014, 20, 13889–13893. 10.1002/chem.201404288. PubMed DOI

Axelsson A.; Ta L.; Sunden H. Catalysts 2015, 5, 2052–2067. 10.3390/catal5042052. DOI

Sauvée C.; Ström A.; Haukka M.; Sundén H. Chem. - Eur. J. 2018, 24, 8071–8075. 10.1002/chem.201800635. PubMed DOI

Pelletier J. D.; Poirier D. Tetrahedron Lett. 1994, 35, 1051–1054. 10.1016/S0040-4039(00)79963-1. DOI

Sultana S.; Lee Y. R. Adv. Synth. Catal. 2020, 362, 927–941. 10.1002/adsc.201901266. DOI

Yuan K.; Kahan R. J.; Si C.; Williams A.; Kirschner S.; Uzelac M.; Zysman-Colman E.; Ingleson M. J. Chem. Sci. 2020, 11, 3258–3267. 10.1039/C9SC05404A. PubMed DOI PMC

Someya H.; Ohmiya H.; Yorimitsu H.; Oshima K. Org. Lett. 2008, 10, 969–971. 10.1021/ol800038a. PubMed DOI

Bower J. F.; Guillaneux D.; Nguyen T.; Wong P. L.; Snieckus V. J. Org. Chem. 1998, 63, 1514–1518. 10.1021/jo971771x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...