Polycyclizations of Ketoesters: Synthesis of Complex Tricycles with up to Five Stereogenic Centers from Available Starting Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33079554
PubMed Central
PMC7660947
DOI
10.1021/acs.orglett.0c03020
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Here we present a polycyclization of oxotriphenylhexanoates. The polycyclization is governed by electronic effects, and three major synthetic paths have been established leading to stereochemically complex tricyclic frameworks with up to five stereogenic centers. The method is compatible with an array of functional groups, allowing pharmacophoric elements to be introduced post cyclization.
Zobrazit více v PubMed
Gates M.; Tschudi G. J. Am. Chem. Soc. 1956, 78, 1380–1393. 10.1021/ja01588a033. DOI
Nicolaou K. C.; Yang Z.; Liu J. J.; Ueno H.; Nantermet P. G.; Guy R. K.; Claiborne C. F.; Renaud J.; Couladouros E. A.; Paulvannan K.; Sorensen E. J. Nature 1994, 367, 630–634. 10.1038/367630a0. PubMed DOI
Holton R. A.; Somoza C.; Kim H. B.; Liang F.; Biediger R. J.; Boatman P. D.; Shindo M.; Smith C. C.; Kim S. J. Am. Chem. Soc. 1994, 116, 1597–1598. 10.1021/ja00083a066. DOI
Holton R. A.; Kim H. B.; Somoza C.; Liang F.; Biediger R. J.; Boatman P. D.; Shindo M.; Smith C. C.; Kim S. J. Am. Chem. Soc. 1994, 116, 1599–1600. 10.1021/ja00083a067. DOI
Woodward R. B.; Cava M. P.; Ollis W. D.; Hunger A.; Daeniker H. U.; Schenker K. J. Am. Chem. Soc. 1954, 76, 4749–4751. 10.1021/ja01647a088. DOI
Gershenzon J.; Dudareva N. Nat. Chem. Biol. 2007, 3, 408–414. 10.1038/nchembio.2007.5. PubMed DOI
Hu P.; Chi H. M.; DeBacker K. C.; Gong X.; Keim J. H.; Hsu I. T.; Snyder S. A. Nature 2019, 569, 703–707. 10.1038/s41586-019-1179-2. PubMed DOI PMC
Fang Z.; Song Y. n.; Zhan P.; Zhang Q.; Liu X. Future Med. Chem. 2014, 6, 885–901. 10.4155/fmc.14.50. PubMed DOI
Schreiber S. L. Science 2000, 287, 1964–1969. 10.1126/science.287.5460.1964. PubMed DOI
Galloway W. R. J. D.; Isidro-Llobet A.; Spring D. R. Nat. Commun. 2010, 1, 80.10.1038/ncomms1081. PubMed DOI
O’ Connor C. J.; Beckmann H. S. G.; Spring D. R. Chem. Soc. Rev. 2012, 41, 4444–4456. 10.1039/c2cs35023h. PubMed DOI
Kuznetsov D. M.; Kutateladze A. G. J. Am. Chem. Soc. 2017, 139, 16584–16590. 10.1021/jacs.7b07598. PubMed DOI
Plesniak M. P.; Garduño-Castro M. H.; Lenz P.; Just-Baringo X.; Procter D. J. Nat. Commun. 2018, 9, 4802.10.1038/s41467-018-07194-x. PubMed DOI PMC
Corey E. J.; Desai M. C.; Engler T. A. J. Am. Chem. Soc. 1985, 107, 4339–4341. 10.1021/ja00300a049. DOI
Bonjoch J.; Solé D. Chem. Rev. 2000, 100, 3455–3482. 10.1021/cr9902547. PubMed DOI
Lee H.; Kang T.; Lee H.-Y. Angew. Chem., Int. Ed. 2017, 56, 8254–8257. 10.1002/anie.201704492. PubMed DOI
Nicolaou K. C.; Sorensen E. J.. Classics in Total Synthesis: Targets, Strategies, Methods; Wiley, 1996.
Tietze L. F. Chem. Rev. 1996, 96, 115–136. 10.1021/cr950027e. PubMed DOI
Tietze L. F.; Brasche G.; Gericke K. M.. Domino Reactions in Organic Synthesis; Wiley-VCH, 2006.
Johnson W. S. Angew. Chem., Int. Ed. Engl. 1976, 15, 9–17. 10.1002/anie.197600091. PubMed DOI
Anderson E. A. Org. Biomol. Chem. 2011, 9, 3997–4006. 10.1039/c1ob05212h. PubMed DOI
Ardkhean R.; Caputo D. F. J.; Morrow S. M.; Shi H.; Xiong Y.; Anderson E. A. Chem. Soc. Rev. 2016, 45, 1557–1569. 10.1039/C5CS00105F. PubMed DOI
Powers Z.; Scharf A.; Cheng A.; Yang F.; Himmelbauer M.; Mitsuhashi T.; Barra L.; Taniguchi Y.; Kikuchi T.; Fujita M.; Abe I.; Porco J. A. Jr Angew. Chem., Int. Ed. 2019, 58, 16141–16146. 10.1002/anie.201910710. PubMed DOI PMC
Shishido K.; Shitara E.; Komatsu H.; Hiroya K.; Fukumoto K.; Kametani T. J. Org. Chem. 1986, 51, 3007–3011. 10.1021/jo00365a029. DOI
Danishefsky S. J.; DeNinno M. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 15–23. 10.1002/anie.198700151. DOI
Mikami K.; Takahashi K.; Nakai T. J. Am. Chem. Soc. 1990, 112, 4035–4037. 10.1021/ja00166a049. DOI
Knight S. D.; Overman L. E.; Pairaudeau G. J. Am. Chem. Soc. 1993, 115, 9293–9294. 10.1021/ja00073a057. DOI
Angle S. R.; Fevig J. M.; Knight S. D.; Marquis R. W.; Overman L. E. J. Am. Chem. Soc. 1993, 115, 3966–3976. 10.1021/ja00063a016. DOI
Denmark S. E.; Thorarensen A. J. Org. Chem. 1994, 59, 5672–5680. 10.1021/jo00098a027. DOI
Mikami K.; Takahashi K.; Nakai T.; Uchimaru T. J. Am. Chem. Soc. 1994, 116, 10948–10954. 10.1021/ja00103a009. DOI
Deng W.; Overman L. E. J. Am. Chem. Soc. 1994, 116, 11241–11250. 10.1021/ja00104a005. DOI
Poulin J.; Grisé-Bard C. M.; Barriault L. Chem. Soc. Rev. 2009, 38, 3092–3101. 10.1039/b819798a. PubMed DOI
Jacobsen E. J.; Levin J.; Overman L. E. J. Am. Chem. Soc. 1988, 110, 4329–4336. 10.1021/ja00221a037. DOI
O’Hagan D. Nat. Prod. Rep. 1989, 6, 205–219. 10.1039/np9890600205. PubMed DOI
Bartlett W. R.; Johnson W. S.; Plummer M. S.; Small V. R. J. Org. Chem. 1990, 55, 2215–2224. 10.1021/jo00294a043. DOI
Snowden R. L.; Eichenberger J. C.; Linder S. M.; Sonnay P.; Vial C.; Schulte-Elte K. H. J. Org. Chem. 1992, 57, 955–960. 10.1021/jo00029a031. DOI
Fish P. V.; Johnson W. S. J. Org. Chem. 1994, 59, 2324–2335. 10.1021/jo00088a011. DOI
Beifuss U.; Ledderhose S. Synlett 1995, 1995, 938–940. 10.1055/s-1995-5114. DOI
Koert U. Angew. Chem., Int. Ed. Engl. 1995, 34, 298–300. 10.1002/anie.199502981. DOI
Barrett T. N.; Barrett A. G. M. J. Am. Chem. Soc. 2014, 136, 17013–17015. 10.1021/ja511534x. PubMed DOI
Dombroski M. A.; Kates S. A.; Snider B. B. J. Am. Chem. Soc. 1990, 112, 2759–2767. 10.1021/ja00163a044. DOI
Porco J. A.; Schoenen F. J.; Stout T. J.; Clardy J.; Schreiber S. L. J. Am. Chem. Soc. 1990, 112, 7410–7411. 10.1021/ja00176a060. DOI
Dauben W. G.; Dinges J.; Smith T. C. J. Org. Chem. 1993, 58, 7635–7637. 10.1021/jo00079a004. DOI
Boyer F.-D.; Hanna I.; Ricard L. Org. Lett. 2004, 6, 1817–1820. 10.1021/ol049452x. PubMed DOI
Pinto A.; Jia Y.; Neuville L.; Zhu J. Chem. - Eur. J. 2007, 13, 961–967. 10.1002/chem.200601016. PubMed DOI
Mai W.-P.; Sun G.-C.; Wang J.-T.; Song G.; Mao P.; Yang L.-R.; Yuan J.-W.; Xiao Y.-M.; Qu L.-B. J. Org. Chem. 2014, 79, 8094–8102. 10.1021/jo501301t. PubMed DOI
Hao T.-T.; Liang H.-R.; Ou-Yang Y.-H.; Yin C.-Z.; Zheng X.-L.; Yuan M.-L.; Li R.-X.; Fu H.-Y.; Chen H. J. Org. Chem. 2018, 83, 4441–4454. 10.1021/acs.joc.8b00150. PubMed DOI
Pellissier H. Adv. Synth. Catal. 2019, 361, 1733–1755. 10.1002/adsc.201801371. DOI
Corey E. J.; Kang M. C. J. Am. Chem. Soc. 1984, 106, 5384–5385. 10.1021/ja00330a076. DOI
Fevig T. L.; Elliott R. L.; Curran D. P. J. Am. Chem. Soc. 1988, 110, 5064–5067. 10.1021/ja00223a026. DOI
Curran D. P.; Liu H. J. Am. Chem. Soc. 1992, 114, 5863–5864. 10.1021/ja00040a060. DOI
Hitchcock S. A.; Pattenden G. Tetrahedron Lett. 1992, 33, 4843–4846. 10.1016/S0040-4039(00)61300-X. DOI
Chen L.; Gill G. B.; Pattenden G. Tetrahedron Lett. 1994, 35, 2593–2596. 10.1016/S0040-4039(00)77180-2. DOI
Takahashi T.; Katouda W.; Sakamoto Y.; Tomida S.; Yamada H. Tetrahedron Lett. 1995, 36, 2273–2276. 10.1016/0040-4039(95)00269-I. DOI
Sebren L. J.; Devery J. J.; Stephenson C. R. J. ACS Catal. 2014, 4, 703–716. 10.1021/cs400995r. PubMed DOI PMC
Plesniak M. P.; Huang H.-M.; Procter D. J. Nat. Rev. Chem. 2017, 1, 0077.10.1038/s41570-017-0077. DOI
Wang X.; Xia D.; Qin W.; Zhou R.; Zhou X.; Zhou Q.; Liu W.; Dai X.; Wang H.; Wang S.; Tan L.; Zhang D.; Song H.; Liu X.-Y.; Qin Y. Chem. 2017, 2, 803–816. 10.1016/j.chempr.2017.04.007. DOI
Hung K.; Hu X.; Maimone T. J. Nat. Prod. Rep. 2018, 35, 174–202. 10.1039/C7NP00065K. PubMed DOI PMC
Nair V.; Babu B. P.; Vellalath S.; Varghese V.; Raveendran A. E.; Suresh E. Org. Lett. 2009, 11, 2507–2510. 10.1021/ol900571x. PubMed DOI
Ta L.; Axelsson A.; Bijl J.; Haukka M.; Sunden H. Chem. - Eur. J. 2014, 20, 13889–13893. 10.1002/chem.201404288. PubMed DOI
Axelsson A.; Ta L.; Sunden H. Catalysts 2015, 5, 2052–2067. 10.3390/catal5042052. DOI
Sauvée C.; Ström A.; Haukka M.; Sundén H. Chem. - Eur. J. 2018, 24, 8071–8075. 10.1002/chem.201800635. PubMed DOI
Pelletier J. D.; Poirier D. Tetrahedron Lett. 1994, 35, 1051–1054. 10.1016/S0040-4039(00)79963-1. DOI
Sultana S.; Lee Y. R. Adv. Synth. Catal. 2020, 362, 927–941. 10.1002/adsc.201901266. DOI
Yuan K.; Kahan R. J.; Si C.; Williams A.; Kirschner S.; Uzelac M.; Zysman-Colman E.; Ingleson M. J. Chem. Sci. 2020, 11, 3258–3267. 10.1039/C9SC05404A. PubMed DOI PMC
Someya H.; Ohmiya H.; Yorimitsu H.; Oshima K. Org. Lett. 2008, 10, 969–971. 10.1021/ol800038a. PubMed DOI
Bower J. F.; Guillaneux D.; Nguyen T.; Wong P. L.; Snieckus V. J. Org. Chem. 1998, 63, 1514–1518. 10.1021/jo971771x. DOI