Transport Properties of Electro-Sprayed Polytetrafluoroethylene Fibrous Layer Filled with Aerogels/Phase Change Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33081151
PubMed Central
PMC7602828
DOI
10.3390/nano10102042
PII: nano10102042
Knihovny.cz E-zdroje
- Klíčová slova
- electrospray, phase change material, polytetrafluoroethylene, silica aerogel, thermal properties, water vapor permeability,
- Publikační typ
- časopisecké články MeSH
This work is the first attempt to prepare microporous polytetrafluoroethylene (PTFE) fibrous layers embedded with aerogels/phase change materials. For preparation of this layer, the needle-less electrospray technology of water dispersion of individual components is used. Microstructure characteristics, including surface morphology and particle size distribution, and various properties of the prepared materials were investigated and explained. Transport performance of the fibrous layers embedded with aerogels/phase change materials, such as the transmission of heat, air, and water vapor was evaluated and discussed in details. It was found that the electro-sprayed materials composed by spherical particles with rough surface had compact disordered stacking structure. Aerogels and phase change materials (PCMs) play different roles in determining structural parameters and transport properties of the materials. Those parameters and properties could be flexibly adjusted by optimizing the spinning parameters, changing the content or proportion of the fillers to meet specific requirements.
Zobrazit více v PubMed
Feng S., Zhong Z., Wang Y., Xing W., Drioli E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Membr. Sci. 2018;549:332–349. doi: 10.1016/j.memsci.2017.12.032. DOI
Brown N.A., Zhu Y., German G.K., Yong X., Chiarot P.R. Electrospray deposit structure of nanoparticle suspensions. J. Electrost. 2017;90:67–73. doi: 10.1016/j.elstat.2017.09.004. DOI
Vail J.R., Krick B.A., Marchman K.R., Sawyer W.G. Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone composites. Wear. 2011;270:737–741. doi: 10.1016/j.wear.2010.12.003. DOI
Huang S., Chen T., Chen H. Study on the composites of two sized silica filled in PTFE. J. Reinf. Plast. Compos. 2006;25:1053–1058. doi: 10.1177/0731684406064999. DOI
Chen Y.C., Lin H.C., Lee Y.D. The effects of filler content and size on the properties of PTFE/SiO2 composites. J. Polym. Res. 2003;10:247–258. doi: 10.1023/B:JPOL.0000004620.71900.16. DOI
Pierre A.C., Pajonk G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002;102:243–4265. doi: 10.1021/cr0101306. PubMed DOI
Huang D., Shen Y., Yuan Q., Wang C., Shi L. Preparation and characterization of silica aerogel/polytetrafluoroethylene composites. Mater. Res. Express. 2019;6:115021. doi: 10.1088/2053-1591/ab454e. DOI
Rosace G., Guido E., Colleoni C., Barigozzi G. Influence of textile structure and silica-based finishing on thermal insulation properties of cotton fabrics. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/1726475. DOI
Shaid A., Fergusson M., Wang L. Thermo-physiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem. Mater. Eng. 2014;2:37–43.
Xiong X., Venkataraman M., Jašíková D., Yang T., Mishra R., Militký J., Petrů M. An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. J. Ind. Text. 2019 doi: 10.1177/1528083719878845. DOI
Xiong X., Yang T., Mishra R., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2017;7:1998–2013. doi: 10.1177/1528083717716167. DOI
Venkataraman M., Mishra R., Militky J., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI
Shaid A., Wang L., Padhye R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 2016;45:611–625. doi: 10.1177/1528083715610296. DOI
Cardoso I., Gomes J.R. The application of microcapsules of PCM in flame resistant nonwoven materials. Int. J. Cloth. Sci. Technol. 2009;21:102–108. doi: 10.1108/09556220910933826. DOI
Zhu F., Feng Q., Liu R., Yu B., Zhou Y. Enhancing the thermal protective performance of firefighters’ protective fabrics by incorporating phase change materials. Fibres Text. East. Eur. 2015;23:68–73.
Hu Y., Huang D., Qi Z., He S., Yang H., Zhang H. Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf. 2013;49:567–573. doi: 10.1007/s00231-012-1103-x. DOI
Huang Y., Huang Q., Liu H., Zhang C., You Y., Li N., Xiao C. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Membr. Sci. 2017;523:317–326. doi: 10.1016/j.memsci.2016.10.019. DOI
Huang Q., Huang Y., Gao S., Zhang M., Xiao C. Novel Ultrafine Fibrous Poly(tetrafluoroethylene)Hollow Fiber Membrane Fabricated by Electrospinning. Polymers. 2018;10:464. doi: 10.3390/polym10050464. PubMed DOI PMC
Aderikha V.N., Shapovalov V.A. Tribological behavior of polytetrafluoroethylene-silica composites. J. Frict. Wear. 2011;32:124–132. doi: 10.3103/S1068366611020024. DOI
Basu B.J., Kumar V.D. Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. Int. Sch. Res. Not. 2011 doi: 10.5402/2011/803910. DOI
Burkarter E., Saul C.K., Thomazi F., Cruz N.C., Zanata S.M., Roman L.S., Schreiner W.H. Superhydrophobic electrosprayed PTFE: A non-contaminating surface. J. Phys. D Appl. Phys. 2007;40:7778–7781. doi: 10.1088/0022-3727/40/24/027. DOI
Burkarter E., Saul C.K., Thomazi F., Cruz N.C., Roman L.S., Schreiner W.H. Superhydrophobic electrosprayed PTFE. Surf. Coat. Technol. 2007;202:194–198. doi: 10.1016/j.surfcoat.2007.05.012. DOI
Venkataraman M., Yang K., Xiong X., Militky J., Kremenakova D., Zhu G., Yao J., Wang Y., Zhang G. Preparation of electrosprayed, microporous particle filled Layers. Polymers. 2020;12:1352. doi: 10.3390/polym12061352. PubMed DOI PMC
Zhang G., Cai C., Wang Y., Liu G., Zhou L., Yao J., Militky J., Marek J., Venkataraman M., Zhu G. Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials. Text. Res. J. 2019;89:3387–3393. doi: 10.1177/0040517518813681. DOI
Costa L.M.M., Bretas R.E.S., Gregorio R. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater. Sci. Appl. 2010;1:247–252. doi: 10.4236/msa.2010.14036. DOI
Dolezal I., Hes L., Bal K. A non-destructive single plate method for measurement of thermal resistance of polymer sheets and fabrics. Int. J. Occup. Saf. Ergon. 2019;25:562–567. doi: 10.1080/10803548.2018.1477247. PubMed DOI
Lenggoro I.W., Xia B., Okuyama K. Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir. 2002;18:4584–4591. doi: 10.1021/la015667t. PubMed DOI
Gomez A., Tang K. Charge and fission of droplets in electrostatic sprays. Phys. Fluids. 1994;6:404–414. doi: 10.1063/1.868037. DOI
Gibson P.W. Factors influencing steady-state heat and water vapor transfer measurements for clothing materials. Text. Res. J. 1993;63:749–764. doi: 10.1177/004051759306301208. DOI
Swarbrick J., Amann A.H., Lindstrom R.E. Factors affecting water vapor transmission through free polymer films. J. Pharm. Sci. 1972;61:1645–1647. doi: 10.1002/jps.2600611025. PubMed DOI