Transport Properties of Electro-Sprayed Polytetrafluoroethylene Fibrous Layer Filled with Aerogels/Phase Change Materials

. 2020 Oct 16 ; 10 (10) : . [epub] 20201016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33081151

This work is the first attempt to prepare microporous polytetrafluoroethylene (PTFE) fibrous layers embedded with aerogels/phase change materials. For preparation of this layer, the needle-less electrospray technology of water dispersion of individual components is used. Microstructure characteristics, including surface morphology and particle size distribution, and various properties of the prepared materials were investigated and explained. Transport performance of the fibrous layers embedded with aerogels/phase change materials, such as the transmission of heat, air, and water vapor was evaluated and discussed in details. It was found that the electro-sprayed materials composed by spherical particles with rough surface had compact disordered stacking structure. Aerogels and phase change materials (PCMs) play different roles in determining structural parameters and transport properties of the materials. Those parameters and properties could be flexibly adjusted by optimizing the spinning parameters, changing the content or proportion of the fillers to meet specific requirements.

Zobrazit více v PubMed

Feng S., Zhong Z., Wang Y., Xing W., Drioli E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Membr. Sci. 2018;549:332–349. doi: 10.1016/j.memsci.2017.12.032. DOI

Brown N.A., Zhu Y., German G.K., Yong X., Chiarot P.R. Electrospray deposit structure of nanoparticle suspensions. J. Electrost. 2017;90:67–73. doi: 10.1016/j.elstat.2017.09.004. DOI

Vail J.R., Krick B.A., Marchman K.R., Sawyer W.G. Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone composites. Wear. 2011;270:737–741. doi: 10.1016/j.wear.2010.12.003. DOI

Huang S., Chen T., Chen H. Study on the composites of two sized silica filled in PTFE. J. Reinf. Plast. Compos. 2006;25:1053–1058. doi: 10.1177/0731684406064999. DOI

Chen Y.C., Lin H.C., Lee Y.D. The effects of filler content and size on the properties of PTFE/SiO2 composites. J. Polym. Res. 2003;10:247–258. doi: 10.1023/B:JPOL.0000004620.71900.16. DOI

Pierre A.C., Pajonk G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002;102:243–4265. doi: 10.1021/cr0101306. PubMed DOI

Huang D., Shen Y., Yuan Q., Wang C., Shi L. Preparation and characterization of silica aerogel/polytetrafluoroethylene composites. Mater. Res. Express. 2019;6:115021. doi: 10.1088/2053-1591/ab454e. DOI

Rosace G., Guido E., Colleoni C., Barigozzi G. Influence of textile structure and silica-based finishing on thermal insulation properties of cotton fabrics. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/1726475. DOI

Shaid A., Fergusson M., Wang L. Thermo-physiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem. Mater. Eng. 2014;2:37–43.

Xiong X., Venkataraman M., Jašíková D., Yang T., Mishra R., Militký J., Petrů M. An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. J. Ind. Text. 2019 doi: 10.1177/1528083719878845. DOI

Xiong X., Yang T., Mishra R., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2017;7:1998–2013. doi: 10.1177/1528083717716167. DOI

Venkataraman M., Mishra R., Militky J., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI

Shaid A., Wang L., Padhye R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 2016;45:611–625. doi: 10.1177/1528083715610296. DOI

Cardoso I., Gomes J.R. The application of microcapsules of PCM in flame resistant nonwoven materials. Int. J. Cloth. Sci. Technol. 2009;21:102–108. doi: 10.1108/09556220910933826. DOI

Zhu F., Feng Q., Liu R., Yu B., Zhou Y. Enhancing the thermal protective performance of firefighters’ protective fabrics by incorporating phase change materials. Fibres Text. East. Eur. 2015;23:68–73.

Hu Y., Huang D., Qi Z., He S., Yang H., Zhang H. Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf. 2013;49:567–573. doi: 10.1007/s00231-012-1103-x. DOI

Huang Y., Huang Q., Liu H., Zhang C., You Y., Li N., Xiao C. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Membr. Sci. 2017;523:317–326. doi: 10.1016/j.memsci.2016.10.019. DOI

Huang Q., Huang Y., Gao S., Zhang M., Xiao C. Novel Ultrafine Fibrous Poly(tetrafluoroethylene)Hollow Fiber Membrane Fabricated by Electrospinning. Polymers. 2018;10:464. doi: 10.3390/polym10050464. PubMed DOI PMC

Aderikha V.N., Shapovalov V.A. Tribological behavior of polytetrafluoroethylene-silica composites. J. Frict. Wear. 2011;32:124–132. doi: 10.3103/S1068366611020024. DOI

Basu B.J., Kumar V.D. Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. Int. Sch. Res. Not. 2011 doi: 10.5402/2011/803910. DOI

Burkarter E., Saul C.K., Thomazi F., Cruz N.C., Zanata S.M., Roman L.S., Schreiner W.H. Superhydrophobic electrosprayed PTFE: A non-contaminating surface. J. Phys. D Appl. Phys. 2007;40:7778–7781. doi: 10.1088/0022-3727/40/24/027. DOI

Burkarter E., Saul C.K., Thomazi F., Cruz N.C., Roman L.S., Schreiner W.H. Superhydrophobic electrosprayed PTFE. Surf. Coat. Technol. 2007;202:194–198. doi: 10.1016/j.surfcoat.2007.05.012. DOI

Venkataraman M., Yang K., Xiong X., Militky J., Kremenakova D., Zhu G., Yao J., Wang Y., Zhang G. Preparation of electrosprayed, microporous particle filled Layers. Polymers. 2020;12:1352. doi: 10.3390/polym12061352. PubMed DOI PMC

Zhang G., Cai C., Wang Y., Liu G., Zhou L., Yao J., Militky J., Marek J., Venkataraman M., Zhu G. Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials. Text. Res. J. 2019;89:3387–3393. doi: 10.1177/0040517518813681. DOI

Costa L.M.M., Bretas R.E.S., Gregorio R. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater. Sci. Appl. 2010;1:247–252. doi: 10.4236/msa.2010.14036. DOI

Dolezal I., Hes L., Bal K. A non-destructive single plate method for measurement of thermal resistance of polymer sheets and fabrics. Int. J. Occup. Saf. Ergon. 2019;25:562–567. doi: 10.1080/10803548.2018.1477247. PubMed DOI

Lenggoro I.W., Xia B., Okuyama K. Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir. 2002;18:4584–4591. doi: 10.1021/la015667t. PubMed DOI

Gomez A., Tang K. Charge and fission of droplets in electrostatic sprays. Phys. Fluids. 1994;6:404–414. doi: 10.1063/1.868037. DOI

Gibson P.W. Factors influencing steady-state heat and water vapor transfer measurements for clothing materials. Text. Res. J. 1993;63:749–764. doi: 10.1177/004051759306301208. DOI

Swarbrick J., Amann A.H., Lindstrom R.E. Factors affecting water vapor transmission through free polymer films. J. Pharm. Sci. 1972;61:1645–1647. doi: 10.1002/jps.2600611025. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...