• This record comes from PubMed

Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop

. 2020 Oct 21 ; 25 (20) : . [epub] 20201021

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 33096904
PubMed Central PMC7588008
DOI 10.3390/molecules25204867
PII: molecules25204867
Knihovny.cz E-resources

Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).

See more in PubMed

Kaushik M., Kaushik S., Roy K., Singh A., Mahendru S., Kumar M., Chaudhary S., Ahmed S., Kukreti S. A bouquet of DNA structures: Emerging diversity. Biochem. Biophys. Rep. 2016;5:388–395. doi: 10.1016/j.bbrep.2016.01.013. PubMed DOI PMC

Kwok C.K., Merrick C.J. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol. 2017;35:997–1013. doi: 10.1016/j.tibtech.2017.06.012. PubMed DOI

Wang G., Vasquez K.M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair. 2014;19:143–151. doi: 10.1016/j.dnarep.2014.03.017. PubMed DOI PMC

Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Saini N., Zhang Y., Usdin K., Lobachev K.S. When secondary comes first--the importance of non-canonical DNA structures. Biochimie. 2012;95:117–123. doi: 10.1016/j.biochi.2012.10.005. PubMed DOI PMC

Wang G., Vasquez K.M. Non-B DNA structure-induced genetic instability. Mutat. Res. Mol. Mech. Mutagen. 2006;598:103–119. doi: 10.1016/j.mrfmmm.2006.01.019. PubMed DOI

Tateishi-Karimata H., Kawauchi K., Sugimoto N. Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. J. Am. Chem. Soc. 2017;140:642–651. doi: 10.1021/jacs.7b09449. PubMed DOI

Kim B.G., Chalikian T.V. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs. Biophys. Chem. 2016;216:19–22. doi: 10.1016/j.bpc.2016.06.001. PubMed DOI

Bielskutė S., Plavec J., Podbevšek P. Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex. J. Am. Chem. Soc. 2019;141:2594–2603. doi: 10.1021/jacs.8b12748. PubMed DOI PMC

Galer P., Wang B., Šket P., Plavec J. Reversible pH Switch of Two-Quartet G-Quadruplexes Formed by Human Telomere. Angew. Chem. Int. Ed. 2016;55:1993–1997. doi: 10.1002/anie.201507569. PubMed DOI

Nakano S.-I., Miyoshi D., Sugimoto N. Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chem. Rev. 2013;114:2733–2758. doi: 10.1021/cr400113m. PubMed DOI

Trajkovski M., Endoh T., Tateishi-Karimata H., Ohyama T., Tanaka S., Plavec J., Sugimoto N. Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Res. 2018;46:4301–4315. doi: 10.1093/nar/gky250. PubMed DOI PMC

Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:2105. doi: 10.1093/nar/gkm109. PubMed DOI PMC

Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC

Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Todd A.K. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005;33:2901–2907. doi: 10.1093/nar/gki553. PubMed DOI PMC

Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI

Huppert J.L. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC

Lightfoot H.L., Hagen T., Tatum N.J., Hall J. The diverse structural landscape of quadruplexes. FEBS Lett. 2019;593:2083–2102. doi: 10.1002/1873-3468.13547. PubMed DOI

Murat P., Balasubramanian S. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 2014;25:22–29. doi: 10.1016/j.gde.2013.10.012. PubMed DOI

Jonchhe S., Pandey S., Karna D., Pokhrel P., Cui Y., Mishra S., Sugiyama H., Endo M., Mao H. Duplex DNA Is Weakened in Nanoconfinement. J. Am. Chem. Soc. 2020;142:10042–10049. doi: 10.1021/jacs.0c01978. PubMed DOI PMC

Da Silva M.W. Geometric Formalism for DNA Quadruplex Folding. Chem. Eur. J. 2007;13:9738–9745. doi: 10.1002/chem.200701255. PubMed DOI

Karsisiotis A.I., O’Kane C., Da Silva M.W. DNA quadruplex folding formalism–A tutorial on quadruplex topologies. Methods. 2013;64:28–35. doi: 10.1016/j.ymeth.2013.06.004. PubMed DOI

Haase L., Dickerhoff J., Weisz K. Sugar Puckering Drives G-Quadruplex Refolding: Implications for V-Shaped Loops. Chem. Eur. J. 2019;26:524–533. doi: 10.1002/chem.201904044. PubMed DOI PMC

Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 2005;1:167–173. doi: 10.1038/nchembio723. PubMed DOI PMC

Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007;129:4386–4392. doi: 10.1021/ja068739h. PubMed DOI PMC

Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. PubMed DOI

De Nicola B., Lech C.J., Heddi B., Regmi S., Frasson I., Perrone R., Richter S.N., Phan A.T. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res. 2016;44:6442–6451. doi: 10.1093/nar/gkw432. PubMed DOI PMC

Meier M., Torres A.M., Krahn N.J., McDougall M.D., Orriss G.L., McRae E., Booy E.P., McEleney K., Patel T.R., A McKenna S., et al. Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. Nucleic Acids Res. 2018;46:5319–5331. doi: 10.1093/nar/gky307. PubMed DOI PMC

Sengar A., Vandana J.J., Chambers V.S., Di Antonio M., Winnerdy F.R., Balasubramanian S., Phan A.T. Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter. Nucleic Acids Res. 2018;47:1564–1572. doi: 10.1093/nar/gky1179. PubMed DOI PMC

Wada T., Nakashima T., Hiroshi N., Penninger J.M. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006;12:17–25. doi: 10.1016/j.molmed.2005.11.007. PubMed DOI

Wang X., Diao L., Sun D., Wang D., Zhu J., He Y., Liu Y., Xu H., Zhang Y., Liu J., et al. Osteoporos Atlas: A human osteoporosis-related gene database. PeerJ. 2019;7:e6778. doi: 10.7717/peerj.6778. PubMed DOI PMC

Walsh M.C., Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front. Immunol. 2014;5:511. doi: 10.3389/fimmu.2014.00511. PubMed DOI PMC

Sobacchi C., Menale C., Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front. Immunol. 2019;10:629. doi: 10.3389/fimmu.2019.00629. PubMed DOI PMC

McClung M.R., Lewiecki E.M., Cohen S.B., Bolognese M.A., Woodson G.C., Moffett A.H., Peacock M., Miller P.D., Lederman S.N., Chesnut C.H., et al. Denosumab in Postmenopausal Women with Low Bone Mineral Density. N. Engl. J. Med. 2006;354:821–831. doi: 10.1056/NEJMoa044459. PubMed DOI

Cummings S.R., Martin J.S., McClung M.R., Siris E.S., Eastell R., Reid I.R., Delmas P., Zoog H.B., Austin M., Wang A., et al. Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2009;361:756–765. doi: 10.1056/NEJMoa0809493. PubMed DOI

Boonen S., Adachi J.D., Man Z., Cummings S.R., Lippuner K., Törring O., Gallagher J.C., Farrerons J., Wang A., Franchimont N., et al. Treatment with Denosumab Reduces the Incidence of New Vertebral and Hip Fractures in Postmenopausal Women at High Risk. J. Clin. Endocrinol. Metab. 2011;96:1727–1736. doi: 10.1210/jc.2010-2784. PubMed DOI

Hoffmann D.B., Böker K.O., Schneider S., Eckermann-Felkl E., Schuder A., Komrakova M., Sehmisch S., Gruber J. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats. Mol. Ther. Nucleic Acids. 2016;5:e298. doi: 10.1038/mtna.2016.15. PubMed DOI PMC

Hoffmann D.B., Gruber J., Böker K.O., Deppe D., Sehmisch S., Schilling A.F., Lemus-Diaz N., Komrakova M., Schneider S. Effects of RANKL Knockdown by Virus-like Particle-Mediated RNAi in a Rat Model of Osteoporosis. Mol. Ther. Nucleic Acids. 2018;12:443–452. doi: 10.1016/j.omtn.2018.06.001. PubMed DOI PMC

Živković M.L., Rozman J., Plavec J. Adenine-Driven Structural Switch from a Two- to Three-Quartet DNA G-Quadruplex. Angew. Chem. Int. Ed. 2018;57:15395–15399. doi: 10.1002/anie.201809328. PubMed DOI PMC

Seenisamy J., Rezler E.M., Powell T.J., Tye D., Gokhale V., Joshi C.S., Siddiqui-Jain A., Hurley L.H. The Dynamic Character of the G-Quadruplex Element in the c-MYC Promoter and Modification by TMPyP4. J. Am. Chem. Soc. 2004;126:8702–8709. doi: 10.1021/ja040022b. PubMed DOI

Chaires J.B., Jt G., C H., Dp K., Rw H., I B., A H., Ak M., H S. Faculty Opinions recommendation of Conformational Dynamics of Strand Register Shifts in DNA G-Quadruplexes. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2020;142:264–273. doi: 10.3410/f.737059844.793572832. PubMed DOI

Lech C.J., Heddi B., Phan A.T. Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Res. 2012;41:2034–2046. doi: 10.1093/nar/gks1110. PubMed DOI PMC

Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. doi: 10.1021/ja045154j. PubMed DOI

Bugaut A., Balasubramanian S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadraplexes. Biochemistry. 2008;47:689–697. doi: 10.1021/bi701873c. PubMed DOI PMC

Takahama K., Sugimoto C., Arai S., Kurokawa R., Oyoshi T. Loop Lengths of G-Quadruplex Structures Affect the G-Quadruplex DNA Binding Selectivity of the RGG Motif in Ewing’s Sarcoma. Biochemistry. 2011;50:5369–5378. doi: 10.1021/bi2003857. PubMed DOI

Huang Z.-L., Dai J., Luo W.-H., Wang X.-G., Tan J.-H., Chen S.-B., Huang Z.-S. Identification of G-Quadruplex-Binding Protein from the Exploration of RGG Motif/G-Quadruplex Interactions. J. Am. Chem. Soc. 2018;140:17945–17955. doi: 10.1021/jacs.8b09329. PubMed DOI

Wu G., Xing Z., Tran E.J., Yang D. DDX5 helicase resolves G-quadruplex and is involved in MYC gene transcriptional activation. Proc. Natl. Acad. Sci. USA. 2019;116:20453–20461. doi: 10.1073/pnas.1909047116. PubMed DOI PMC

Tippana R., Hwang H., Opresko P.L., Bohr V.A., Myong S. Single-molecule imaging reveals a common mechanism shared by G-quadruplex–resolving helicases. Proc. Natl. Acad. Sci. USA. 2016;113:8448–8453. doi: 10.1073/pnas.1603724113. PubMed DOI PMC

Tippana R., Xiao W., Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42:8106–8114. doi: 10.1093/nar/gku464. PubMed DOI PMC

Tian T., Chen Y.-Q., Wang S.-R., Zhou X. G-Quadruplex: A Regulator of Gene Expression and Its Chemical Targeting. Chem. 2018;4:1314–1344. doi: 10.1016/j.chempr.2018.02.014. DOI

Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC

Kovačič M., Podbevšek P., Tateishi-Karimata H., Takahashi S., Sugimoto N., Plavec J. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res. 2020;48:3975–3986. doi: 10.1093/nar/gkaa118. PubMed DOI PMC

Schnarr L., Jana J., Preckwinkel P., Weisz K. Impact of a Snap-Back Loop on Stability and Ligand Binding to a Parallel G-Quadruplex. J. Phys. Chem. B. 2020;124:2778–2787. doi: 10.1021/acs.jpcb.0c00700. PubMed DOI

Jain A.K., Bhattacharya S. Interaction of G-Quadruplexes with Nonintercalating Duplex-DNA Minor Groove Binding Ligands. Bioconjugate Chem. 2011;22:2355–2368. doi: 10.1021/bc200268a. PubMed DOI

Di Leva F.S., Novellino E., Cavalli A., Parrinello M., Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res. 2014;42:5447–5455. doi: 10.1093/nar/gku247. PubMed DOI PMC

Cao Q., Li Y., Freisinger E., Qin P.Z., Sigel R.K.O., Mao Z.-W. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg. Chem. Front. 2017;4:10–32. doi: 10.1039/C6QI00300A. DOI

Liu W., Zhong Y.-F., Liu L.-Y., Shen C.-T., Zeng W., Wang F., Yang D., Mao Z.-W. Solution structures of multiple G-quadruplex complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-05810-4. PubMed DOI PMC

Nguyen T.Q.N., Lim K.W., Phan A.T. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res. 2020;48:10567–10575. doi: 10.1093/nar/gkaa738. PubMed DOI PMC

Goddard T.D., Kneller D.G. Sparky 3. University of California; San Francisco, CA, USA: 2004.

Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., et al. AMBER 14. University of California; San Francisco, CA, USA: 2014.

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham I.T.E., Jurečka P., Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC

Zgarbová M., Estarellas C., Šponer J., Otyepka M., Jurečka P. A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. J. Chem. Theory Comput. 2012;8:3232–3242. doi: 10.1021/ct3001987. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...