Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33096904
PubMed Central
PMC7588008
DOI
10.3390/molecules25204867
PII: molecules25204867
Knihovny.cz E-resources
- Keywords
- G-quadruplex, NMR spectroscopy, osteoporosis, structure,
- MeSH
- Adenine chemistry MeSH
- G-Quadruplexes MeSH
- Guanine chemistry MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- RANK Ligand genetics MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Osteoporosis genetics MeSH
- Receptor Activator of Nuclear Factor-kappa B genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenine MeSH
- Guanine MeSH
- RANK Ligand MeSH
- Receptor Activator of Nuclear Factor-kappa B MeSH
- TNFRSF11A protein, human MeSH Browser
- TNFSF11 protein, human MeSH Browser
Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
EN FIST Centre of Excellence Trg OF 13 1000 Ljubljana Slovenia
Slovenian NMR Centre National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
See more in PubMed
Kaushik M., Kaushik S., Roy K., Singh A., Mahendru S., Kumar M., Chaudhary S., Ahmed S., Kukreti S. A bouquet of DNA structures: Emerging diversity. Biochem. Biophys. Rep. 2016;5:388–395. doi: 10.1016/j.bbrep.2016.01.013. PubMed DOI PMC
Kwok C.K., Merrick C.J. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol. 2017;35:997–1013. doi: 10.1016/j.tibtech.2017.06.012. PubMed DOI
Wang G., Vasquez K.M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair. 2014;19:143–151. doi: 10.1016/j.dnarep.2014.03.017. PubMed DOI PMC
Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Saini N., Zhang Y., Usdin K., Lobachev K.S. When secondary comes first--the importance of non-canonical DNA structures. Biochimie. 2012;95:117–123. doi: 10.1016/j.biochi.2012.10.005. PubMed DOI PMC
Wang G., Vasquez K.M. Non-B DNA structure-induced genetic instability. Mutat. Res. Mol. Mech. Mutagen. 2006;598:103–119. doi: 10.1016/j.mrfmmm.2006.01.019. PubMed DOI
Tateishi-Karimata H., Kawauchi K., Sugimoto N. Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. J. Am. Chem. Soc. 2017;140:642–651. doi: 10.1021/jacs.7b09449. PubMed DOI
Kim B.G., Chalikian T.V. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs. Biophys. Chem. 2016;216:19–22. doi: 10.1016/j.bpc.2016.06.001. PubMed DOI
Bielskutė S., Plavec J., Podbevšek P. Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex. J. Am. Chem. Soc. 2019;141:2594–2603. doi: 10.1021/jacs.8b12748. PubMed DOI PMC
Galer P., Wang B., Šket P., Plavec J. Reversible pH Switch of Two-Quartet G-Quadruplexes Formed by Human Telomere. Angew. Chem. Int. Ed. 2016;55:1993–1997. doi: 10.1002/anie.201507569. PubMed DOI
Nakano S.-I., Miyoshi D., Sugimoto N. Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chem. Rev. 2013;114:2733–2758. doi: 10.1021/cr400113m. PubMed DOI
Trajkovski M., Endoh T., Tateishi-Karimata H., Ohyama T., Tanaka S., Plavec J., Sugimoto N. Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Res. 2018;46:4301–4315. doi: 10.1093/nar/gky250. PubMed DOI PMC
Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:2105. doi: 10.1093/nar/gkm109. PubMed DOI PMC
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Todd A.K. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005;33:2901–2907. doi: 10.1093/nar/gki553. PubMed DOI PMC
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI
Huppert J.L. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Lightfoot H.L., Hagen T., Tatum N.J., Hall J. The diverse structural landscape of quadruplexes. FEBS Lett. 2019;593:2083–2102. doi: 10.1002/1873-3468.13547. PubMed DOI
Murat P., Balasubramanian S. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 2014;25:22–29. doi: 10.1016/j.gde.2013.10.012. PubMed DOI
Jonchhe S., Pandey S., Karna D., Pokhrel P., Cui Y., Mishra S., Sugiyama H., Endo M., Mao H. Duplex DNA Is Weakened in Nanoconfinement. J. Am. Chem. Soc. 2020;142:10042–10049. doi: 10.1021/jacs.0c01978. PubMed DOI PMC
Da Silva M.W. Geometric Formalism for DNA Quadruplex Folding. Chem. Eur. J. 2007;13:9738–9745. doi: 10.1002/chem.200701255. PubMed DOI
Karsisiotis A.I., O’Kane C., Da Silva M.W. DNA quadruplex folding formalism–A tutorial on quadruplex topologies. Methods. 2013;64:28–35. doi: 10.1016/j.ymeth.2013.06.004. PubMed DOI
Haase L., Dickerhoff J., Weisz K. Sugar Puckering Drives G-Quadruplex Refolding: Implications for V-Shaped Loops. Chem. Eur. J. 2019;26:524–533. doi: 10.1002/chem.201904044. PubMed DOI PMC
Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 2005;1:167–173. doi: 10.1038/nchembio723. PubMed DOI PMC
Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007;129:4386–4392. doi: 10.1021/ja068739h. PubMed DOI PMC
Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. PubMed DOI
De Nicola B., Lech C.J., Heddi B., Regmi S., Frasson I., Perrone R., Richter S.N., Phan A.T. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res. 2016;44:6442–6451. doi: 10.1093/nar/gkw432. PubMed DOI PMC
Meier M., Torres A.M., Krahn N.J., McDougall M.D., Orriss G.L., McRae E., Booy E.P., McEleney K., Patel T.R., A McKenna S., et al. Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. Nucleic Acids Res. 2018;46:5319–5331. doi: 10.1093/nar/gky307. PubMed DOI PMC
Sengar A., Vandana J.J., Chambers V.S., Di Antonio M., Winnerdy F.R., Balasubramanian S., Phan A.T. Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter. Nucleic Acids Res. 2018;47:1564–1572. doi: 10.1093/nar/gky1179. PubMed DOI PMC
Wada T., Nakashima T., Hiroshi N., Penninger J.M. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006;12:17–25. doi: 10.1016/j.molmed.2005.11.007. PubMed DOI
Wang X., Diao L., Sun D., Wang D., Zhu J., He Y., Liu Y., Xu H., Zhang Y., Liu J., et al. Osteoporos Atlas: A human osteoporosis-related gene database. PeerJ. 2019;7:e6778. doi: 10.7717/peerj.6778. PubMed DOI PMC
Walsh M.C., Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front. Immunol. 2014;5:511. doi: 10.3389/fimmu.2014.00511. PubMed DOI PMC
Sobacchi C., Menale C., Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front. Immunol. 2019;10:629. doi: 10.3389/fimmu.2019.00629. PubMed DOI PMC
McClung M.R., Lewiecki E.M., Cohen S.B., Bolognese M.A., Woodson G.C., Moffett A.H., Peacock M., Miller P.D., Lederman S.N., Chesnut C.H., et al. Denosumab in Postmenopausal Women with Low Bone Mineral Density. N. Engl. J. Med. 2006;354:821–831. doi: 10.1056/NEJMoa044459. PubMed DOI
Cummings S.R., Martin J.S., McClung M.R., Siris E.S., Eastell R., Reid I.R., Delmas P., Zoog H.B., Austin M., Wang A., et al. Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2009;361:756–765. doi: 10.1056/NEJMoa0809493. PubMed DOI
Boonen S., Adachi J.D., Man Z., Cummings S.R., Lippuner K., Törring O., Gallagher J.C., Farrerons J., Wang A., Franchimont N., et al. Treatment with Denosumab Reduces the Incidence of New Vertebral and Hip Fractures in Postmenopausal Women at High Risk. J. Clin. Endocrinol. Metab. 2011;96:1727–1736. doi: 10.1210/jc.2010-2784. PubMed DOI
Hoffmann D.B., Böker K.O., Schneider S., Eckermann-Felkl E., Schuder A., Komrakova M., Sehmisch S., Gruber J. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats. Mol. Ther. Nucleic Acids. 2016;5:e298. doi: 10.1038/mtna.2016.15. PubMed DOI PMC
Hoffmann D.B., Gruber J., Böker K.O., Deppe D., Sehmisch S., Schilling A.F., Lemus-Diaz N., Komrakova M., Schneider S. Effects of RANKL Knockdown by Virus-like Particle-Mediated RNAi in a Rat Model of Osteoporosis. Mol. Ther. Nucleic Acids. 2018;12:443–452. doi: 10.1016/j.omtn.2018.06.001. PubMed DOI PMC
Živković M.L., Rozman J., Plavec J. Adenine-Driven Structural Switch from a Two- to Three-Quartet DNA G-Quadruplex. Angew. Chem. Int. Ed. 2018;57:15395–15399. doi: 10.1002/anie.201809328. PubMed DOI PMC
Seenisamy J., Rezler E.M., Powell T.J., Tye D., Gokhale V., Joshi C.S., Siddiqui-Jain A., Hurley L.H. The Dynamic Character of the G-Quadruplex Element in the c-MYC Promoter and Modification by TMPyP4. J. Am. Chem. Soc. 2004;126:8702–8709. doi: 10.1021/ja040022b. PubMed DOI
Chaires J.B., Jt G., C H., Dp K., Rw H., I B., A H., Ak M., H S. Faculty Opinions recommendation of Conformational Dynamics of Strand Register Shifts in DNA G-Quadruplexes. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2020;142:264–273. doi: 10.3410/f.737059844.793572832. PubMed DOI
Lech C.J., Heddi B., Phan A.T. Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Res. 2012;41:2034–2046. doi: 10.1093/nar/gks1110. PubMed DOI PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. doi: 10.1021/ja045154j. PubMed DOI
Bugaut A., Balasubramanian S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadraplexes. Biochemistry. 2008;47:689–697. doi: 10.1021/bi701873c. PubMed DOI PMC
Takahama K., Sugimoto C., Arai S., Kurokawa R., Oyoshi T. Loop Lengths of G-Quadruplex Structures Affect the G-Quadruplex DNA Binding Selectivity of the RGG Motif in Ewing’s Sarcoma. Biochemistry. 2011;50:5369–5378. doi: 10.1021/bi2003857. PubMed DOI
Huang Z.-L., Dai J., Luo W.-H., Wang X.-G., Tan J.-H., Chen S.-B., Huang Z.-S. Identification of G-Quadruplex-Binding Protein from the Exploration of RGG Motif/G-Quadruplex Interactions. J. Am. Chem. Soc. 2018;140:17945–17955. doi: 10.1021/jacs.8b09329. PubMed DOI
Wu G., Xing Z., Tran E.J., Yang D. DDX5 helicase resolves G-quadruplex and is involved in MYC gene transcriptional activation. Proc. Natl. Acad. Sci. USA. 2019;116:20453–20461. doi: 10.1073/pnas.1909047116. PubMed DOI PMC
Tippana R., Hwang H., Opresko P.L., Bohr V.A., Myong S. Single-molecule imaging reveals a common mechanism shared by G-quadruplex–resolving helicases. Proc. Natl. Acad. Sci. USA. 2016;113:8448–8453. doi: 10.1073/pnas.1603724113. PubMed DOI PMC
Tippana R., Xiao W., Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42:8106–8114. doi: 10.1093/nar/gku464. PubMed DOI PMC
Tian T., Chen Y.-Q., Wang S.-R., Zhou X. G-Quadruplex: A Regulator of Gene Expression and Its Chemical Targeting. Chem. 2018;4:1314–1344. doi: 10.1016/j.chempr.2018.02.014. DOI
Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC
Kovačič M., Podbevšek P., Tateishi-Karimata H., Takahashi S., Sugimoto N., Plavec J. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res. 2020;48:3975–3986. doi: 10.1093/nar/gkaa118. PubMed DOI PMC
Schnarr L., Jana J., Preckwinkel P., Weisz K. Impact of a Snap-Back Loop on Stability and Ligand Binding to a Parallel G-Quadruplex. J. Phys. Chem. B. 2020;124:2778–2787. doi: 10.1021/acs.jpcb.0c00700. PubMed DOI
Jain A.K., Bhattacharya S. Interaction of G-Quadruplexes with Nonintercalating Duplex-DNA Minor Groove Binding Ligands. Bioconjugate Chem. 2011;22:2355–2368. doi: 10.1021/bc200268a. PubMed DOI
Di Leva F.S., Novellino E., Cavalli A., Parrinello M., Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res. 2014;42:5447–5455. doi: 10.1093/nar/gku247. PubMed DOI PMC
Cao Q., Li Y., Freisinger E., Qin P.Z., Sigel R.K.O., Mao Z.-W. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg. Chem. Front. 2017;4:10–32. doi: 10.1039/C6QI00300A. DOI
Liu W., Zhong Y.-F., Liu L.-Y., Shen C.-T., Zeng W., Wang F., Yang D., Mao Z.-W. Solution structures of multiple G-quadruplex complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-05810-4. PubMed DOI PMC
Nguyen T.Q.N., Lim K.W., Phan A.T. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res. 2020;48:10567–10575. doi: 10.1093/nar/gkaa738. PubMed DOI PMC
Goddard T.D., Kneller D.G. Sparky 3. University of California; San Francisco, CA, USA: 2004.
Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., et al. AMBER 14. University of California; San Francisco, CA, USA: 2014.
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham I.T.E., Jurečka P., Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC
Zgarbová M., Estarellas C., Šponer J., Otyepka M., Jurečka P. A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. J. Chem. Theory Comput. 2012;8:3232–3242. doi: 10.1021/ct3001987. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI