New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33105567
PubMed Central
PMC7690285
DOI
10.3390/ani10111938
PII: ani10111938
Knihovny.cz E-zdroje
- Klíčová slova
- fibroblasts, microarray, porcine, primary culture,
- Publikační typ
- časopisecké články MeSH
The mechanisms of wound healing and vascularization are crucial steps of the complex morphological process of tissue reconstruction. In addition to epithelial cells, fibroblasts play an important role in this process. They are characterized by dynamic proliferation and they form the stroma for epithelial cells. In this study, we have used primary cultures of oral fibroblasts, obtained from porcine buccal mucosa. Cells were maintained long-term in in vitro conditions, in order to investigate the expression profile of the molecular markers involved in wound healing and vascularization. Based on the Affymetrix assays, we have observed three ontological groups of markers as wound healing group, response to wounding group and vascularization group, represented by different genes characterized by their expression profile during long-term primary in vitro culture (IVC) of porcine oral fibroblasts. Following the analysis of gene expression in three previously identified groups of genes, we have identified that transforming growth factor beta 1 (TGFB1), ITGB3, PDPN, and ETS1 are involved in all three processes, suggesting that these genes could be recognized as markers of repair specific for oral fibroblasts within the porcine mucosal tissue.
Department of Anatomy and Histology University of Zielona Gora 65 046 Zielona Góra Poland
Department of Anatomy Poznan University of Medical Science 60 781 Poznań Poland
Department of Histology and Embryology Poznan University of Medical Science 60 781 Poznań Poland
Department of Veterinary Surgery Nicolaus Copernicus University in Torun 87 100 Toruń Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Politis C., Schoenaers J., Jacobs R., Agbaje J.O. Wound Healing Problems in the Mouth. Front. Physiol. 2016;7:507. doi: 10.3389/fphys.2016.00507. PubMed DOI PMC
Enoch S., Peake M.A., Wall I., Davies L., Farrier J., Giles P., Kipling D., Price P., Moseley R., Thomas D., et al. ‘Young’ oral fibroblasts are geno/phenotypically distinct. J. Dent. Res. 2010;89:1407–1413. doi: 10.1177/0022034510377796. PubMed DOI
Glim J.E., van Egmond M., Niessen F.B., Everts V., Beelen R.H.J. Detrimental dermal wound healing: What can we learn from the oral mucosa? Wound Repair Regen. 2013;21:648–660. doi: 10.1111/wrr.12072. PubMed DOI
Jones K.B., Klein O.D. Oral epithelial stem cells in tissue maintenance and disease: The first steps in a long journey. Int. J. Oral Sci. 2013;5:121–129. doi: 10.1038/ijos.2013.46. PubMed DOI PMC
Kondo M., Yamato M., Takagi R., Murakami D., Namiki H., Okano T. Significantly different proliferative potential of oral mucosal epithelial cells between six animal species. J. Biomed. Mater. Res. A. 2014;102:1829–1837. doi: 10.1002/jbm.a.34849. PubMed DOI
Winning T.A., Townsend G.C. Oral mucosal embryology and histology. Clin. Dermatol. 2000;18:499–511. doi: 10.1016/S0738-081X(00)00140-1. PubMed DOI
Bryja A., Dyszkiewicz-Konwińska M., Jankowski M., Celichowski P., Stefańska K., Chamier-Gliszczyńska A., Borowiec B., Mehr K., Bukowska D., Antosik P., et al. Cation homeostasis and transport related gene markers are differentially expressed in porcine buccal pouch mucosal cells during long-term cells primary culture in vitro. Med. J. Cell Biol. 2018;6:83–90. doi: 10.2478/acb-2018-0014. DOI
Bryja A., Dyszkiewicz-Konwińska M., Jankowski M., Celichowski P., Stefańska K., Chamier-Gliszczyńska A., Popis M., Mehr K., Bukowska D., Antosik P., et al. Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro—A microarray approach. Med. J. Cell Biol. 2018;6:75–82. doi: 10.2478/acb-2018-0013. DOI
Ferguson M.W.J., O’Kane S. Scar-free healing: From embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:839–850. doi: 10.1098/rstb.2004.1475. PubMed DOI PMC
Coolen N.A., Schouten K.C.W.M., Boekema B.K.H.L., Middelkoop E., Ulrich M.M.W. Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound Repair Regen. 2010;18:291–301. doi: 10.1111/j.1524-475X.2010.00585.x. PubMed DOI
Coolen N.A., Schouten K.C.W.M., Middelkoop E., Ulrich M.M.W. Comparison between human fetal and adult skin. Arch. Dermatol. Res. 2010;302:47–55. doi: 10.1007/s00403-009-0989-8. PubMed DOI PMC
Namazi M.R., Fallahzadeh M.K., Schwartz R.A. Strategies for prevention of scars: What can we learn from fetal skin? Int. J. Dermatol. 2011;50:85–93. doi: 10.1111/j.1365-4632.2010.04678.x. PubMed DOI
Kathju S., Gallo P.H., Satish L. Scarless integumentary wound healing in the mammalian fetus: Molecular basis and therapeutic implications. Birth Defects Res. C Embryo Today. 2012;96:223–236. doi: 10.1002/bdrc.21015. PubMed DOI
Penn J.W., Grobbelaar A.O., Rolfe K.J. The role of the TGF-beta family in wound healing, burns and scarring: A review. Int. J. Burns Trauma. 2012;2:18–28. PubMed PMC
Chen L., Arbieva Z.H., Guo S., Marucha P.T., Mustoe T.A., DiPietro L.A. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics. 2010;11:471. doi: 10.1186/1471-2164-11-471. PubMed DOI PMC
Bryja A., Dyszkiewicz-Konwinska M., Budna J., Ciesiółka S., Kranc W., Borys S., Jeseta M., Urbaniak O., Bukowska D., Antosik P., et al. Expression of cell mitotic progression proteins and keratinocyte markers in porcine buccal pouch mucosal cells during short-term, real-time primary culture. J. Biol. Regul. Homeost. Agents. 2017;31:297–309. PubMed
Bryja A., Dyszkiewicz-Konwinska M., Budna J., Kranc W., Chachula A., Borys S., Ciesiółka S., Sokalski J., Prylinski M., Bukowska D., et al. The biomedical aspects of oral mucosal epithelial cell culture in mammals. J. Biol. Regul. Homeost. Agents. 2017;31:81–85. PubMed
Takaichi S., Muramatsu T., Lee J.-M., Jung H.-S., Shinozaki N., Katakura A., Yamane G.-Y. Re-epithelialization of the buccal mucosa after alkaline chemical injury. Acta Histochem. Cytochem. 2014;47:195–201. doi: 10.1267/ahc.14015. PubMed DOI PMC
Lee H.-G., Eun H.C. Differences between fibroblasts cultured from oral mucosa and normal skin: Implication to wound healing. J. Dermatol. Sci. 1999;21:176–182. doi: 10.1016/S0923-1811(99)00037-7. PubMed DOI
Wong J.W., Gallant-Behm C., Wiebe C., Mak K., Hart D.A., Larjava H., Häkkinen L. Wound healing in oral mucosa results in reduced scar formation as compared with skin: Evidence from the red Duroc pig model and humans. Wound Repair Regen. 2009;17:717–729. doi: 10.1111/j.1524-475X.2009.00531.x. PubMed DOI
Smith P.C., Martínez C., Martínez J., McCulloch C.A. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front. Physiol. 2019;10:270. doi: 10.3389/fphys.2019.00270. PubMed DOI PMC
Rahimov C.H., Gasimov E., Guliyev T., Rzayev F., Farzaliyev I. Comparative behavior of wound healing on within different sites of oral mucosa and skin. Experimental study on pigs by electron microscope. Int. J. Oral Maxillofac. Surg. 2015;44:e278. doi: 10.1016/j.ijom.2015.08.289. DOI
Hyun S.-Y., Mun S., Kang K.-J., Lim J.-C., Kim S.-Y., Han K., Jang Y.-J. Amelogenic transcriptome profiling in ameloblast-like cells derived from adult gingival epithelial cells. Sci. Rep. 2019;9:3736. doi: 10.1038/s41598-019-40091-x. PubMed DOI PMC
Khan M., Gasser S. Generating Primary Fibroblast Cultures from Mouse Ear and Tail Tissues. J. Vis. Exp. 2016;107:53565. doi: 10.3791/53565. PubMed DOI PMC
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Huang D.W., Sherman B.T., Tan Q., Collins J.R., Alvord W.G., Roayaei J., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183. doi: 10.1186/gb-2007-8-9-r183. PubMed DOI PMC
Walter W., Sanchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
Von Mering C., Jensen L.J., Snel B., Hooper S.D., Krupp M., Foglierini M., Jouffre N., Huynen M.A., Bork P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Mak K., Manji A., Gallant-Behm C., Wiebe C., Hart D.A., Larjava H., Hakkinen L. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J. Dermatol. Sci. 2009;56:168–180. doi: 10.1016/j.jdermsci.2009.09.005. PubMed DOI
Gemenetzidis E., Elena-Costea D., Parkinson E.K., Waseem A., Wan H., Teh M.T. Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res. 2010;70:9515–9526. doi: 10.1158/0008-5472.CAN-10-2173. PubMed DOI PMC
Nakamura T., Endo K.-I., Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells. 2007;25:628–638. doi: 10.1634/stemcells.2006-0494. PubMed DOI
Izumi K., Tobita T., Feinberg S.E. Isolation of human oral keratinocyte progenitor/stem cells. J. Dent. Res. 2007;86:341–346. doi: 10.1177/154405910708600408. PubMed DOI
Stephens P., Genever P. Non-epithelial oral mucosal progenitor cell populations. Oral Dis. 2007;13:1–10. doi: 10.1111/j.1601-0825.2006.01314.x. PubMed DOI
Ravikanth M., Soujanya P., Manjunath K., Saraswathi T.R., Ramachandran C.R. Heterogenecity of fibroblasts. J. Oral Maxillofac. Pathol. 2011;15:247–250. doi: 10.4103/0973-029X.84516. PubMed DOI PMC
Higa K., Satake Y., Shimazaki J. The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci. OA. 2017;3:FSO243. doi: 10.4155/fsoa-2017-0074. PubMed DOI PMC
Van Wyk C.W., Olivier A., Hoal-van Helden E.G., Grobler-Rabie A.F. Growth of oral and skin fibroblasts from patients with oral submucous fibrosis. J. Oral Pathol. Med. 1995;24:349–353. doi: 10.1111/j.1600-0714.1995.tb01198.x. PubMed DOI
Mah W., Jiang G., Olver D., Gallant-Behm C., Wiebe C., Hart D.A., Koivisto L., Larjava H., Häkkinen L. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. Am. J. Pathol. 2017;187:1717–1735. doi: 10.1016/j.ajpath.2017.04.017. PubMed DOI
Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature. 2008;453:314–321. doi: 10.1038/nature07039. PubMed DOI
Murphy-Ullrich J.E., Poczatek M. Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 2000;11:59–69. doi: 10.1016/S1359-6101(99)00029-5. PubMed DOI
Szpaderska A.M., Walsh C.G., Steinberg M.J., DiPietro L.A. Distinct patterns of angiogenesis in oral and skin wounds. J. Dent. Res. 2005;84:309–314. doi: 10.1177/154405910508400403. PubMed DOI
Szpaderska A.M., Zuckerman J.D., DiPietro L.A. Differential injury responses in oral mucosal and cutaneous wounds. J. Dent. Res. 2003;82:621–626. doi: 10.1177/154405910308200810. PubMed DOI
Lu S.-L., Reh D., Li A.G., Woods J., Corless C.L., Kulesz-Martin M., Wang X.-J. Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 2004;64:4405–4410. doi: 10.1158/0008-5472.CAN-04-1032. PubMed DOI
Januszyk M., Rennert R.C., Sorkin M., Maan Z.N., Wong L.K., Whittam A.J., Whitmore A., Duscher D., Gurtner G.C. Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis. Microarrays. 2015;4:540–550. doi: 10.3390/microarrays4040540. PubMed DOI PMC
Miyoshi K., Horiguchi T., Tanimura A., Hagita H., Noma T. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BioMed Res. Int. 2015;2015:121575. doi: 10.1155/2015/121575. PubMed DOI PMC
Larjava H., Wiebe C., Gallant-Behm C., Hart D.A., Heino J., Hakkinen L. Exploring scarless healing of oral soft tissues. J. Can. Dent. Assoc. 2011;77:b18. PubMed
Wang R., Ghahary A., Shen Q., Scott P.G., Roy K., Tredget E.E. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8:128–137. doi: 10.1046/j.1524-475x.2000.00128.x. PubMed DOI
Czuwara-Ladykowska J., Sementchenko V.I., Watson D.K., Trojanowska M. Ets1 is an effector of the transforming growth factor beta (TGF-beta ) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J. Biol. Chem. 2002;277:20399–20408. doi: 10.1074/jbc.M200206200. PubMed DOI
Ebisawa K., Kato R., Okada M., Sugimura T., Latif M.A., Hori Y., Narita Y., Ueda M., Honda H., Kagami H. Gingival and dermal fibroblasts: Their similarities and differences revealed from gene expression. J. Biosci. Bioeng. 2011;111:255–258. doi: 10.1016/j.jbiosc.2010.11.014. PubMed DOI