Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33113938
PubMed Central
PMC7660207
DOI
10.3390/ijerph17217745
PII: ijerph17217745
Knihovny.cz E-zdroje
- Klíčová slova
- aerobic, fatigue, football, lactate, performance decrement,
- MeSH
- běh fyziologie MeSH
- fotbal fyziologie MeSH
- kyselina mléčná krev MeSH
- lidé MeSH
- sportovní výkon fyziologie MeSH
- spotřeba kyslíku MeSH
- únava MeSH
- zátěžový test MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- kyselina mléčná MeSH
In this study, the Ajax Shuttle Test (AST) and the Curved Sprint Test (CST) were conducted on semiprofessional football players to evaluate (1) their test performance, (2) the extent of anaerobic glycolysis by measuring blood lactate, (3) performance decrement and onset of fatigue, and (4) the correlation between selected physiological variables and test performance. Thirty-two semiprofessional Polish football players participated in this study. Both AST and CST were conducted on an outdoor football ground and were conducted in two sets; each set had six repetitions. In the case of AST, the total duration for 6 repetitions of the exercise in Sets 1 and 2 were 90.63 ± 3.71 and 91.65 ± 4.24 s, respectively, whereas, in the case of CST, the respective values were 46.8 ± 0.56 and 47.2 ± 0.66 s. Peak blood lactate concentration [La] after Sets 1 and 2 of AST were 14.47 ± 3.77 and 15.00 ± 1.85 mmol/L, and in the case of CST, the values were 8.17 ± 1.32 and 9.78 ± 1.35 mmol/L, respectively. Performance decrement in AST was more than in CST, both after Set 1 (4.32 ± 1.43 and 3.31 ± 0.96 in AST and CST, respectively) and Set 2 (7.95 ± 3.24 and 3.71 ± 1.02 in AST and CST, respectively). Only in a few of the repetitions, pulmonary ventilation (VE) and oxygen uptake (VO2) were found to be significantly correlated with the performance of the volunteers in both AST and CST. Respiratory exchange ratio (RER) was significantly correlated with most of the repetitions of AST, but not with CST. The study concludes that (1) AST shows more dependence on the anaerobic glycolytic system than shorter repetitive sprints (as in CST), (2) there is more performance decrement and fatigue in AST than in CST, and (3) early decrease in performance and fatigue in the semiprofessional football players in AST and CST may be due to the insufficiency of their aerobic energy system.
Faculty of Medical Sciences University of West Indies Cave Hill 11000 Barbados
Sport Lab Laboratory of Physical Preparation 00 951 Warsaw Poland
Zobrazit více v PubMed
Chamari K., Moussa-Chamari I., Boussaïdi L., Hachana Y., Kaouech F., Wisløff U. Appropriate interpretation of aerobic capacity: Allometric scaling in adult and young soccer players. Br. J. Sports Med. 2005;39:97–101. doi: 10.1136/bjsm.2003.010215. PubMed DOI PMC
O’Donoghue P.G., Boyd M., Lawlor J., Bleakley E.W. Time-motion analysis of elite, semi-professional and amateur soccer competition. J. Hum. Mov. Stud. 2001;41:1–12.
Tønnessen E., Hem E., Leirstein S., Haugen T., Seiler S. Maximal aerobic power characteristics of male professional soccer players, 1989–2012. Int. J. Sports Physiol. Perform. 2013;8:323–329. doi: 10.1123/ijspp.8.3.323. PubMed DOI
Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997;15:257–263. doi: 10.1080/026404197367263. PubMed DOI
Helgerud J., Rodas G., Kemi O.J., Hoff J. Strength and Endurance in Elite Football Players. Int. J. Sports Med. 2011;32:677–682. doi: 10.1055/s-0031-1275742. PubMed DOI
Bangsbo J. Physiological Demands of Football. Sports Sci. Exch. 2014;27:1–6. doi: 10.1590/S0080-62342012000600018. DOI
Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004. PubMed DOI
Russell M., Sparkes W., Northeast J., Cook C.J., Love T.D., Bracken R.M., Kilduff L.P. Changes in Acceleration and Deceleration Capacity Throughout Professional Soccer Match-Play. J. Strength Cond. Res. 2016;30:2839–2844. doi: 10.1519/JSC.0000000000000805. PubMed DOI
Krustrup P., Bangsbo J. Physiological demands of top-class soccer refereeing in relation to physical capacity: Effect of intense intermittent exercise training. J. Sports Sci. 2001;19:881–891. doi: 10.1080/026404101753113831. PubMed DOI
Balsom P.D., Ekblom B., Sjödin B. Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta Physiol. Scand. 1994;150:455–456. doi: 10.1111/j.1748-1716.1994.tb09711.x. PubMed DOI
Lattier G., Millet G.Y., Martin A., Martin V. Fatigue and Recovery After High-Intensity Exercise Part II: Recovery Interventions. Int. J. Sports Med. 2004;25:509–515. doi: 10.1055/s-2004-820946. PubMed DOI
Idrizović K., Raičković N. The correlation between aerobic power, acceleration, repeated-sprint and speed endurance in elite female football. Res. Phys. Educ. Sport Health. 2013;2:51–56.
Nilsson J., Cardinale D. Running Economy and Blood Lactate Accumulation in Elite Football Players with High and Low Maximal Aerobic Power. LASE J. Sport Sci. 2015;6:44–51. doi: 10.1515/ljss-2016-0004. DOI
MacInnis M.J., Gibala M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017;595:2915–2930. doi: 10.1113/JP273196. PubMed DOI PMC
Christensen P.M., Krustrup P., Gunnarsson T.P., Kiilerich K., Nybo L., Bangsbo J. VO2 Kinetics and Performance in Soccer Players after Intense Training and Inactivity. Med. Sci. Sport. Exerc. 2011;43:1716–1724. doi: 10.1249/MSS.0b013e318211c01a. PubMed DOI
Da Silva J.F., Guglielmo L.G.A., Bishop D. Relationship Between Different Measures of Aerobic Fitness and Repeated-Sprint Ability in Elite Soccer Players. J. Strength Cond. Res. 2010;24:2115–2121. doi: 10.1519/JSC.0b013e3181e34794. PubMed DOI
Impellizzeri F.M., Marcora S.M., Castagna C., Reilly T., Sassi A., Iaia F.M., Rampinini E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int. J. Sports Med. 2006;27:483–492. doi: 10.1055/s-2005-865839. PubMed DOI
Ziogas G.G., Patras K.N., Stergiou N., Georgoulis A.D. Velocity at lactate threshold and running economy must also be considered along with maximal oxygen uptake when testing elite soccer players during preseason. J. Strength Cond. Res. 2011;25:414–419. doi: 10.1519/JSC.0b013e3181bac3b9. PubMed DOI
Stanula A., Gabrys T., Szmatlan-Gabrys U., Roczniok R., Maszczyk A., Pietraszewski P. Calculating lactate anaerobic thresholds in sports involving different endurance preparation. J. Exerc. Sci. Fit. 2013;11:12–18. doi: 10.1016/j.jesf.2012.12.001. DOI
Burgess D.J., Naughton G., Norton K.I. Profile of movement demands of national football players in Australia. J. Sci. Med. Sport. 2006;9:334–341. doi: 10.1016/j.jsams.2006.01.005. PubMed DOI
Haugen T.A., Tønnessen E., Hisdal J., Seiler S. The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 2014;9:432–441. doi: 10.1123/ijspp.2013-0121. PubMed DOI
Rampinini E., Coutts A.J., Castagna C., Sassi R., Impellizzeri F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007;28:1018–1024. doi: 10.1055/s-2007-965158. PubMed DOI
Barnes C., Archer D.T., Hogg B., Bush M., Bradley P.S. The evolution of physical and technical performance parameters in the english premier league. Int. J. Sports Med. 2014;35:1095–1100. doi: 10.1055/s-0034-1375695. PubMed DOI
Bloomfield J., Polman R., O’Donoghue P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007;6:63–70. PubMed PMC
Brughelli M., Cronin J., Levin G., Chaouachi A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008;38:1045–1063. doi: 10.2165/00007256-200838120-00007. PubMed DOI
Faude O., Koch T., Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012;30:625–631. doi: 10.1080/02640414.2012.665940. PubMed DOI
Mohr M., Krustrup P., Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003;21:519–528. doi: 10.1080/0264041031000071182. PubMed DOI
De Araújo M.C., Baumgart C., Freiwald J., Hoppe M.W. Nonlinear sprint performance differentiates professional from young soccer players. J. Sports Med. Phys. Fit. 2018;58:1204–1210. doi: 10.23736/S0022-4707.17.07116-X. PubMed DOI
Granero-Gil P., Bastida-Castillo A., Rojas-Valverde D., Gómez-Carmona C.D., de la Sánchez E.C., Pino-Ortega J. Influence of contextual variables in the changes of direction and centripetal force generated during an elite-level soccer team season. Int. J. Environ. Res. Public Health. 2020;17:967. doi: 10.3390/ijerph17030967. PubMed DOI PMC
Caldbeck P. Contextual Sprinting in Premier League Football. John Moores University; Liverpool, UK: 2019.
Verheijen R. The Complete Handbook of Conditioning for Soccer. Redswain Videos and Books; Spring City, PA, USA: 1998.
Turner A., Walker S., Stembridge M., Coneyworth P., Reed G., Birdsey L., Barter P., Moody J. A testing battery for the assessment of fitness in soccer players. Strength Cond. J. 2011;33:29–39. doi: 10.1519/SSC.0b013e31822fc80a. DOI
Krustrup P., Mohr M., Amstrup T., Rysgaard T., Johansen J., Steensberg A., Pedersen P.K., Bangsbo J. The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003;35:697–705. doi: 10.1249/01.MSS.0000058441.94520.32. PubMed DOI
Bangsbo J., Iaia F.M., Krustrup P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38:37–51. doi: 10.2165/00007256-200838010-00004. PubMed DOI
Paradisis G.P., Zacharogiannis E., Mandila D., Smirtiotou A., Argeitaki P., Cooke C.B. Multi-stage 20-m shuttle run fitness test, maximal oxygen uptake and velocity at maximal oxygen uptake. J. Hum. Kinet. 2014;41:81–87. doi: 10.2478/hukin-2014-0035. PubMed DOI PMC
Higino W.P., Sorroche A.D.S., De Mattos Falqueiro P.G., Suzuki Lima Y.C., Higa C.L. Determination of Aerobic Performance in Youth Soccer Players: Effect of Direct and Indirect Methods. J. Hum. Kinet. 2017;56:109–118. doi: 10.1515/hukin-2017-0028. PubMed DOI PMC
Doyon K.H., Perrey S., Abe D., Hughson R.L. Field testing of VO2peak in cross-country skiers with portable breath-by-breath system. Can. J. Appl. Physiol. 2001;26:1–11. doi: 10.1139/h01-001. PubMed DOI
Hausswirth C., Bigard A., Le Chevalier J. The Cosmed K4 Telemetry System as an Accurate Device for Oxygen Uptake Measurements during Exercise. Int. J. Sports Med. 1997;28:449–453. doi: 10.1055/s-2007-972662. PubMed DOI
Oliver J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport. 2009;12:20–23. doi: 10.1016/j.jsams.2007.10.010. PubMed DOI
Alexandre D., Da Silva C., Hill-Haas S., Wong D., Natali A., De Lima J., Filho M., Marins J., Garcia E., Chamari K. Heart rate monitoring in soccer: Interest and limits during competitive match play and training, practical application. J. Strength Cond. Res. 2012;26:2890–2906. doi: 10.1519/JSC.0b013e3182429ac7. PubMed DOI
Caldwell B.P., Peters D.M. Seasonal variation in physiological fitness of a semiprofessional soccer team. J. Strength Cond. Res. 2009;23:1370–1377. doi: 10.1519/JSC.0b013e3181a4e82f. PubMed DOI
Meckel Y., Doron O., Eliakim E., Eliakim A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports. 2018;6:14. doi: 10.3390/sports6010014. PubMed DOI PMC
Slettaløkken G., Rønnestad B.R. High-Intensity Interval Training Every Second Week Maintains V[Combining Dot Above]O2max in Soccer Players During Off-Season. J. Strength Cond. Res. 2014;28:1946–1951. doi: 10.1519/JSC.0000000000000356. PubMed DOI
Sarmento H., Marcelino R., Anguera M.T., CampaniÇo J., Matos N., LeitÃo J.C. Match analysis in football: A systematic review. J. Sports Sci. 2014;32:1831–1843. doi: 10.1080/02640414.2014.898852. PubMed DOI
Saunders P.U., Pyne D.B., Telford R.D., Hawley J.A. Factors affecting running economy in trained distance runners. Sport. Med. 2004;34:465–485. doi: 10.2165/00007256-200434070-00005. PubMed DOI
Burgess T.L., Lambert M.I. The effects of training, muscle damage and fatigue on running economy: Review article. Int. Sport. J. 2010;11:363–379.
Barnes K.R., Kilding A.E. Running economy: Measurement, norms, and determining factors. Sport. Med. Open. 2015;1:1–15. doi: 10.1186/s40798-015-0007-y. PubMed DOI PMC
Dolci F., Hart N.H., Kilding A., Chivers P., Piggott B., Spiteri T. Movement Economy in Soccer: Current Data and Limitations. Sports. 2018;6:124. doi: 10.3390/sports6040124. PubMed DOI PMC
Buchheit M., Haydar B., Hader K., Ufland P., Ahmaidi S. Assessing running economy during field running with changes of direction: Application to 20 m shuttle runs. Int. J. Sports Physiol. Perform. 2011;6:380–395. doi: 10.1123/ijspp.6.3.380. PubMed DOI
Helgerud J., Engen L.C., Wisløff U., Hoff J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001;33:1925–1931. doi: 10.1097/00005768-200111000-00019. PubMed DOI
Buchheit M., Bishop D., Haydar B., Nakamura F.Y., Ahmaidi S. Physiological responses to shuttle repeated-sprint running. Int. J. Sports Med. 2010;31:402–409. doi: 10.1055/s-0030-1249620. PubMed DOI
Dellal A., Keller D., Carling C., Chaouachi A., Wong D.P., Chamari K. Physiologic effects of directional changes in intermittent exercise in soccer players. J. Strength Cond. Res. 2010;24:3219–3226. doi: 10.1519/JSC.0b013e3181b94a63. PubMed DOI
Osgnach C., Poser S., Bernardini R., Rinaldo R., Di Prampero P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010;42:170–178. doi: 10.1249/MSS.0b013e3181ae5cfd. PubMed DOI
Di Prampero P.E., Fusi S., Sepulcri L., Morin J.B., Belli A., Antonutto G. Sprint running: A new energetic approach. J. Exp. Biol. 2005;208:2809–2816. doi: 10.1242/jeb.01700. PubMed DOI
Sermaxhaj S., Telai B. Influence of some anthropometric variables and the specific motoric on the success of the Football players of First Junior League of Kosovo; Proceedings of the Research in Physical Education, Sport and Health; Ohrid, Macedonia. 30–31 May 2014; pp. 111–115.
Tomlin D.L., Wenger H. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001. PubMed DOI
Fransson D., Nielsen T.S., Olsson K., Christensson T., Bradley P.S., Fatouros I.G., Krustrup P., Nordsborg N.B., Mohr M. Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: Speed endurance runs versus small-sided game training. Eur. J. Appl. Physiol. 2018;118:111–121. doi: 10.1007/s00421-017-3751-5. PubMed DOI PMC
Santos-Silva P.R., Pedrinelli A., Greve J.M.D. Blood lactate and oxygen consumption in soccer players: Comparison between different positions on the field. Med. Express. 2017;4:1–6. doi: 10.5935/MedicalExpress.2017.01.02. DOI
Bangsbo J., Iaia F.M., Krustrup P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform. 2007;2:111–127. doi: 10.1123/ijspp.2.2.111. PubMed DOI
Bradley P.S., Sheldon W., Wooster B., Olsen P., Boanas P., Krustrup P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009;27:159–168. doi: 10.1080/02640410802512775. PubMed DOI
Buchheit M., Lepretre P.M., Behaegel A.L., Millet G.P., Cuvelier G., Ahmaidi S. Cardiorespiratory responses during running and sport-specific exercises in handball players. J. Sci. Med. Sport. 2009;12:399–405. doi: 10.1016/j.jsams.2007.11.007. PubMed DOI
Billat L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. Sports Med. 2001;31:75–90. doi: 10.2165/00007256-200131020-00001. PubMed DOI
Midgley A., Mc Naughton L. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J. Sports Med. Phys. Fit. 2006;41:1–14. PubMed
Midgley A.W., McNaughton L.R., Wilkinson M. Is there an Optimal Training Intensity for Enhancing the Maximal Oxygen Uptake of Distance Runners? Sports Med. 2006;36:117–132. doi: 10.2165/00007256-200636020-00003. PubMed DOI
Helgerud J., Høydal K., Wang E., Karlsen T., Berg P., Bjerkaas M., Simonsen T., Helgesen C., Hjorth N., Bach R., et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc. 2007;39:665–671. doi: 10.1249/mss.0b013e3180304570. PubMed DOI
Nyberg M., Fiorenza M., Lund A., Christensen M., RØmer T., Piil P., Hostrup M., Christensen P.M., Holbek S., Ravnholt T., et al. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med. Sci. Sports Exerc. 2016;48:1355–1364. doi: 10.1249/MSS.0000000000000900. PubMed DOI
Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability part I: Factors contributing to fatigue. Sport. Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI
Divert C., Mornieux G., Freychat P., Baly L., Mayer F., Belli A. Barefoot-shod running differences: Shoe or mass effect? Int. J. Sports Med. 2008;29:512–518. doi: 10.1055/s-2007-989233. PubMed DOI
Hader K., Palazzi D., Buchheit M. Change of direction speed in soccer: How much braking is enough? Kinesiology. 2015;47:67–74.
Zamparo P., Pavei G., Nardello F., Bartolini D., Monte A., Minetti A.E. Mechanical work and efficiency of 5 + 5 m shuttle running. Eur. J. Appl. Physiol. 2016;116:1911–1919. doi: 10.1007/s00421-016-3443-6. PubMed DOI
Shaw A.J., Ingham S.A., Folland J.P. The valid measurement of running economy in runners. Med. Sci. Sports Exerc. 2014;46:1968–1973. doi: 10.1249/MSS.0000000000000311. PubMed DOI