• This record comes from PubMed

Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires

. 2020 Oct 28 ; 13 (21) : . [epub] 20201028

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
914/RN2/RR4/2019 Politechnika Śląska

Piezocatalysis is a novel method that can be applied for degradation of organic pollutants in wastewater. In this paper, ferroelectric nanowires of antimony sulfoiodide (SbSI) have been fabricated using a sonochemical method. Methyl orange (MO) was chosen as a typical pollutant, as it is widely used as a dye in industry. An aqueous solution of MO at a concentration of 30 mg/L containing SbSI nanowires (6 g/L) was subjected to ultrasonic vibration. High degradation efficiency of 99.5% was achieved after an extremely short period of ultrasonic irradiation (40 s). The large reaction rate constant of 0.126(8) s-1 was determined for piezocatalytic MO decomposition. This rate constant is two orders of magnitude larger than values of reaction rate constants reported in the literature for the most efficient piezocatalysts. These promising experimental results have proved a great potential of SbSI nanowires for their application in environmental purification and renewable energy conversion.

See more in PubMed

Wang Y., Gai L., Ma W., Jiang H., Peng X., Zhao L. Ultrasound-assisted catalytic degradation of Methyl orange with Fe3O4/polyaniline in near neutral solution. Ind. Eng. Chem. Res. 2015;54:2279–2289. doi: 10.1021/ie504242k. DOI

Starr M.B., Wang X. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 2013;3:2160. doi: 10.1038/srep02160. PubMed DOI PMC

Starr M.B., Wang X. Coupling of piezoelectric effect with electrochemical processes. Nano Energy. 2015;14:296–311. doi: 10.1016/j.nanoen.2015.01.035. DOI

Pan L., Sun S., Chen Y., Wang P., Wang J., Zhang X., Zou J.-J., Wang Z.L. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 2020;10:2000214. doi: 10.1002/aenm.202000214. DOI

Starr M.B., Shi J., Wang X. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 2012;51:5962–5966. doi: 10.1002/anie.201201424. PubMed DOI

Li S., Zhao Z., Zhao J., Zhang Z., Li X., Zhang J. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020;3:1063–1079. doi: 10.1021/acsanm.0c00039. DOI

Liang Z., Yan C.-F., Rtimi S., Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019;241:256–269. doi: 10.1016/j.apcatb.2018.09.028. DOI

Jina C., Liu D., Hu J., Wang Y., Zhang Q., Lv L., Zhuge F. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy. 2019;59:372–379. doi: 10.1016/j.nanoen.2019.02.047. DOI

Wu J., Qin N., Bao D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy. 2018;45:44–51. doi: 10.1016/j.nanoen.2017.12.034. DOI

Yuan B.W., Wu J., Qin N., Lin E.Z., Bao D.H. Enhanced piezocatalytic performance of (Ba,Sr)TiO3 nanowires to degrade organic pollutants. ACS Appl. Nano Mater. 2018;1:5119–5127. doi: 10.1021/acsanm.8b01206. DOI

Wu J., Xu Q., Lin E., Yuan B., Qin N., Thatikonda S.K., Bao D. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces. 2018;10:17842–17849. doi: 10.1021/acsami.8b01991. PubMed DOI

Ling J., Wang K., Wang Z., Huang H., Zhang G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason. Sonochem. 2020;61:104819. doi: 10.1016/j.ultsonch.2019.104819. PubMed DOI

You H., Jia Y., Wu Z., Xu X., Qian W., Xia Y., Ismail M. Strong piezo-electrochemical effect of multiferroic BiFeO3 square microsheets for mechanocatalysis. Electrochem. Commun. 2017;79:55–58. doi: 10.1016/j.elecom.2017.04.017. DOI

Kang Z., Qin N., Lin E., Wu J., Yuan B., Bao D. Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: Roles of adsorption and piezocatalysis. J. Clean. Prod. 2020;261:121125. doi: 10.1016/j.jclepro.2020.121125. DOI

Wu J.M., Chang W.E., Chang Y.T., Chang C.-K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single and few-layers MoS2 nanoflowers. Adv. Mater. 2016;28:3718–3725. doi: 10.1002/adma.201505785. PubMed DOI

Zhang A., Liu Z., Xie B., Lu J., Guo K., Ke S., Shu L., Fan H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B Environ. 2020;279:119353. doi: 10.1016/j.apcatb.2020.119353. DOI

Kateshali A.F., Soleimannejad J. Synthesis of crystalline NiO nanorodes from a new Ni(II) nanocoordination compound and its application in sonocatalytic dye removal. Mater. Res. Express. 2019;6:115065. doi: 10.1088/2053-1591/ab490b. DOI

Jin C., Liu D., Li M., Wang Y., He Z., Xu M., Li X., Ying H., Wu Y., Zhang Q. Preparation of multifunctional PLZT nanowires and their applications in piezocatalysis and transparent flexible films. J. Alloys Compd. 2019;811:152063. doi: 10.1016/j.jallcom.2019.152063. DOI

Nie Q., Xie Y., Ma J., Wang J., Zhang G. High piezoecatalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Clean. Prod. 2020;242:118532. doi: 10.1016/j.jclepro.2019.118532. DOI

You H., Wu Z., Jia Y., Xu X., Xia Y., Han Z., Wang Y. High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere. 2017;183:528–535. doi: 10.1016/j.chemosphere.2017.05.130. PubMed DOI

Fenga W., Yuan J., Zhang L., Hu W., Wu Z., Wang X., Huang X., Liu P., Zhang S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B Environ. 2020;277:119250. doi: 10.1016/j.apcatb.2020.119250. DOI

Biswas A., Saha S., Jana N.R. ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants. ACS Appl. Nano Mater. 2019;2:1120–1128. doi: 10.1021/acsanm.9b00107. DOI

Mistewicz K., Nowak M., Stróż D. A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials. 2019;9:580. doi: 10.3390/nano9040580. PubMed DOI PMC

Grekov A.A., Danilova S.P., Zaks P.L., Kulieva V.V., Rubanov L.A., Syrkin L.N., Chekhunova N.P., El’gard A.M. Piezoelectric elements made from antimony sulphoiodide crystals. Akust. Zurnal. 1973;19:622–623.

Hamano K., Nakamura T., Ishibashi Y., Ooyane T. Piezoelectric property of SbSI single crystal. J. Phys. Soc. Jpn. 1965;20:1886–1887. doi: 10.1143/JPSJ.20.1886. DOI

Nowak M., Mroczek P., Duka P., Kidawa A., Szperlich P., Grabowski A., Szala J., Moskal G. Using of textured polycrystalline SbSI in actuators. Sens. Actuators A. 2009;150:251–256. doi: 10.1016/j.sna.2009.01.005. DOI

Purusothaman Y., Alluri N.R., Chandrasekhar A., Kim S.-J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy. 2018;50:256–265. doi: 10.1016/j.nanoen.2018.05.058. DOI

Mistewicz K., Nowak M., Stróż D., Paszkiewicz R. SbSI nanowires for ferroelectric generators operating under shock pressure. Mater. Lett. 2016;180:15–18. doi: 10.1016/j.matlet.2016.05.093. DOI

Toroń B., Szperlich P., Kozioł M. SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors—The influence of SBSI nanowires conglomeration on piezoelectric properties. Materials. 2020;13:902. doi: 10.3390/ma13040902. PubMed DOI PMC

Mistewicz K., Matysiak W., Jesionek M., Jarka P., Kępińska M., Nowak M., Tański T., Stróż D., Szade J., Balin K., et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 2020;517:146138. doi: 10.1016/j.apsusc.2020.146138. DOI

Mistewicz K., Nowak M., Stróż D., Guiseppi-Elie A. Ferroelectric SbSI nanowires for ammonia detection at a low temperature. Talanta. 2018;189:225–232. doi: 10.1016/j.talanta.2018.06.086. PubMed DOI

Mistewicz K. Recent advances in ferroelectric nanosensors: Toward sensitive detection of gas, mechanothermal signals, and radiation. J. Nanomater. 2018;2018:2651056. doi: 10.1155/2018/2651056. DOI

Mistewicz K., Nowak M., Starczewska A., Jesionek M., Rzychoń T., Wrzalik R., Guiseppi-Elie A. Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 2016;182:78–80. doi: 10.1016/j.matlet.2016.06.073. DOI

Wang C., Zhang M., Fang Y., Chen G., Li Q., Sheng X., Xu X., Hui J., Lan Y.-Q., Fang M., et al. SbSI nanocrystals: An excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 2018;6:12166. doi: 10.1021/acssuschemeng.8b02498. DOI

Muthusamy T., Bhattacharyya A.J. Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 2016;6:105980–105987. doi: 10.1039/C6RA23750A. DOI

Tasviri M., Sajadi-Hezave Z. SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 2017;436:174–181. doi: 10.1016/j.mcat.2017.04.020. DOI

Mistewicz K., Nowak M., Paszkiewicz R., Guiseppi-Elie A. SbSI nanosensors: From gel to single nanowire devices. Nanoscale Res. Lett. 2017;12:97. doi: 10.1186/s11671-017-1854-x. PubMed DOI PMC

Nowak M., Bober Ł., Borkowski B., Kępińska M., Szperlich P., Stróż D., Sozańska M. Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires. Opt. Mater. 2013;35:2208–2216. doi: 10.1016/j.optmat.2013.06.003. DOI

Antimony Sulfide Iodide, JCPDS-International Centre for Diffraction Data, PCPDFWIN v.2.1, Card File No. 75-0781. 2000.

Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępinska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., et al. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A. 2014;210:119–130. doi: 10.1016/j.sna.2014.02.012. DOI

Pankove J.I. Optical Processes in Semiconductors. Prentice-Hall, Inc.; Englewood Cliffs, NJ, USA: 1971. [(accessed on 3 August 2020)]. Available online: https://trove.nla.gov.au/version/45414559.

Al-Qaradawi S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A. 2002;148:161–168. doi: 10.1016/S1010-6030(02)00086-2. DOI

Chalastara K., Guo F., Elouatik S., Demopoulos G.P. Tunable composition aqueous-synthesized mixed-phase TiO2 nanocrystals for photo-assisted water decontamination: Comparison of anatase, brookite and rutile photocatalysts. Catalysts. 2020;10:407. doi: 10.3390/catal10040407. DOI

Zhao Y., Fang Z.B., Feng W.H., Wang K.Q., Huang X.Y., Liu P. Hydrogen production from pure water via piezoelectric-assisted visible-light photocatalysis of CdS nanorod arrays. ChemCatChem. 2018;10:3397–3401. doi: 10.1002/cctc.201800666. DOI

Santos H.M., Lodeiro C., Capelo-Martínez J.L. The power of ultrasound. In: Capelo-Martínez J.L., editor. Ultrasound in Chemistry: Analytical Applications. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 1–16. DOI

Doche M.-L., Hihn J.-Y., Mandroyan A., Viennet R., Touyeras F. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media. Ultrason. Sonochem. 2003;10:357–362. doi: 10.1016/S1350-4177(03)00099-3. PubMed DOI

Lin E., Wu J., Qin N., Yuan B., Bao D. Silver modified barium titanate as a highly efficient piezocatalyst. Catal. Sci. Technol. 2018;8:4788–4796. doi: 10.1039/C8CY01127C. DOI

Jin C.C., Liu C.H., Liu X.C., Wang Y., Hwang H.L. Experimental and simulation study on BCTZ-based flexible energy harvesting device filled with Ag-coated Cu particles. Ceram. Int. 2018;44:17391. doi: 10.1016/j.ceramint.2018.06.204. DOI

Bi Y., Ouyang S., Umezawa N., Cao J., Ye J. Facet effect of single-crystalline Ag3PO4 submicrocrystals on photocatalytic properties. J. Am. Chem. Soc. 2011;133:6490–6492. doi: 10.1021/ja2002132. PubMed DOI

Yu C.L., Li G., Kumar S., Yang K., Jin R.C. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv. Mater. 2014;26:892–898. doi: 10.1002/adma.201304173. PubMed DOI

Fan Y., Ma W., Han D., Gan S., Dong X., Niu L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015;27:3767–3773. doi: 10.1002/adma.201500391. PubMed DOI

Hu Y., Gao X., Yu L., Wang Y., Ning J., Xu S., Lou X.W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013;52:5636–5639. doi: 10.1002/anie.201301709. PubMed DOI

Xiang G., Li T., Zhuang J., Wang X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010;46:6801–6803. doi: 10.1039/c0cc02327b. PubMed DOI

Sheikh M.U.D., Naikoo G.A., Thomas M., Bano M., Khan F. Solar-assisted photocatalytic reduction of methyl orange azo dye over porous TiO2 nanostructures. New J. Chem. 2016;40:5483–5494. doi: 10.1039/C5NJ03513A. DOI

Ghule L.A., Patil A.A., Sapnar K.B., Dhole S.D., Garadkar K.M. Photocatalytic degradation of methyl orange using ZnO nanorods. Toxicol. Environ. Chem. 2011;93:623–634. doi: 10.1080/02772248.2011.560852. DOI

Sang Y., Zhao Z., Zhao M., Hao P., Leng Y., Liu H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 2015;27:363–369. doi: 10.1002/adma.201403264. PubMed DOI

Sun M., Li D., Li W., Chen Y., Chen Z., He Y., Fu X. New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C. 2008;112:18076–18081. doi: 10.1021/jp806496d. DOI

Wang N., Pan Y., Wu S., Zhang E., Dai W. Fabrication of nanoporous copper with tunable ligaments and promising sonocatalytic performance by dealloying Cu–Y metallic glasses. RSC Adv. 2017;7:43255–43265. doi: 10.1039/C7RA08390D. DOI

Merouani S., Hamdaoui O., Rezgui Y., Guemini M. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem. 2014;21:53–59. doi: 10.1016/j.ultsonch.2013.05.008. PubMed DOI

Dai K., Chen H., Peng T., Ke D., Yi H. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere. 2007;69:1361–1367. doi: 10.1016/j.chemosphere.2007.05.021. PubMed DOI

Baiocchi C., Brussinoa M.C., Pramauro E., Prevot A.B., Palmisano L., Marci G. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int. J. Mass Spectrom. 2002;214:247–256. doi: 10.1016/S1387-3806(01)00590-5. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...