Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
914/RN2/RR4/2019
Politechnika Śląska
PubMed
33126441
PubMed Central
PMC7662994
DOI
10.3390/ma13214803
PII: ma13214803
Knihovny.cz E-resources
- Keywords
- antimony sulfoiodide (SbSI), methyl orange, nanowires, ultrasound-assisted piezocatalysis, water purification,
- Publication type
- Journal Article MeSH
Piezocatalysis is a novel method that can be applied for degradation of organic pollutants in wastewater. In this paper, ferroelectric nanowires of antimony sulfoiodide (SbSI) have been fabricated using a sonochemical method. Methyl orange (MO) was chosen as a typical pollutant, as it is widely used as a dye in industry. An aqueous solution of MO at a concentration of 30 mg/L containing SbSI nanowires (6 g/L) was subjected to ultrasonic vibration. High degradation efficiency of 99.5% was achieved after an extremely short period of ultrasonic irradiation (40 s). The large reaction rate constant of 0.126(8) s-1 was determined for piezocatalytic MO decomposition. This rate constant is two orders of magnitude larger than values of reaction rate constants reported in the literature for the most efficient piezocatalysts. These promising experimental results have proved a great potential of SbSI nanowires for their application in environmental purification and renewable energy conversion.
See more in PubMed
Wang Y., Gai L., Ma W., Jiang H., Peng X., Zhao L. Ultrasound-assisted catalytic degradation of Methyl orange with Fe3O4/polyaniline in near neutral solution. Ind. Eng. Chem. Res. 2015;54:2279–2289. doi: 10.1021/ie504242k. DOI
Starr M.B., Wang X. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 2013;3:2160. doi: 10.1038/srep02160. PubMed DOI PMC
Starr M.B., Wang X. Coupling of piezoelectric effect with electrochemical processes. Nano Energy. 2015;14:296–311. doi: 10.1016/j.nanoen.2015.01.035. DOI
Pan L., Sun S., Chen Y., Wang P., Wang J., Zhang X., Zou J.-J., Wang Z.L. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 2020;10:2000214. doi: 10.1002/aenm.202000214. DOI
Starr M.B., Shi J., Wang X. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 2012;51:5962–5966. doi: 10.1002/anie.201201424. PubMed DOI
Li S., Zhao Z., Zhao J., Zhang Z., Li X., Zhang J. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020;3:1063–1079. doi: 10.1021/acsanm.0c00039. DOI
Liang Z., Yan C.-F., Rtimi S., Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019;241:256–269. doi: 10.1016/j.apcatb.2018.09.028. DOI
Jina C., Liu D., Hu J., Wang Y., Zhang Q., Lv L., Zhuge F. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy. 2019;59:372–379. doi: 10.1016/j.nanoen.2019.02.047. DOI
Wu J., Qin N., Bao D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy. 2018;45:44–51. doi: 10.1016/j.nanoen.2017.12.034. DOI
Yuan B.W., Wu J., Qin N., Lin E.Z., Bao D.H. Enhanced piezocatalytic performance of (Ba,Sr)TiO3 nanowires to degrade organic pollutants. ACS Appl. Nano Mater. 2018;1:5119–5127. doi: 10.1021/acsanm.8b01206. DOI
Wu J., Xu Q., Lin E., Yuan B., Qin N., Thatikonda S.K., Bao D. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces. 2018;10:17842–17849. doi: 10.1021/acsami.8b01991. PubMed DOI
Ling J., Wang K., Wang Z., Huang H., Zhang G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason. Sonochem. 2020;61:104819. doi: 10.1016/j.ultsonch.2019.104819. PubMed DOI
You H., Jia Y., Wu Z., Xu X., Qian W., Xia Y., Ismail M. Strong piezo-electrochemical effect of multiferroic BiFeO3 square microsheets for mechanocatalysis. Electrochem. Commun. 2017;79:55–58. doi: 10.1016/j.elecom.2017.04.017. DOI
Kang Z., Qin N., Lin E., Wu J., Yuan B., Bao D. Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: Roles of adsorption and piezocatalysis. J. Clean. Prod. 2020;261:121125. doi: 10.1016/j.jclepro.2020.121125. DOI
Wu J.M., Chang W.E., Chang Y.T., Chang C.-K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single and few-layers MoS2 nanoflowers. Adv. Mater. 2016;28:3718–3725. doi: 10.1002/adma.201505785. PubMed DOI
Zhang A., Liu Z., Xie B., Lu J., Guo K., Ke S., Shu L., Fan H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B Environ. 2020;279:119353. doi: 10.1016/j.apcatb.2020.119353. DOI
Kateshali A.F., Soleimannejad J. Synthesis of crystalline NiO nanorodes from a new Ni(II) nanocoordination compound and its application in sonocatalytic dye removal. Mater. Res. Express. 2019;6:115065. doi: 10.1088/2053-1591/ab490b. DOI
Jin C., Liu D., Li M., Wang Y., He Z., Xu M., Li X., Ying H., Wu Y., Zhang Q. Preparation of multifunctional PLZT nanowires and their applications in piezocatalysis and transparent flexible films. J. Alloys Compd. 2019;811:152063. doi: 10.1016/j.jallcom.2019.152063. DOI
Nie Q., Xie Y., Ma J., Wang J., Zhang G. High piezoecatalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Clean. Prod. 2020;242:118532. doi: 10.1016/j.jclepro.2019.118532. DOI
You H., Wu Z., Jia Y., Xu X., Xia Y., Han Z., Wang Y. High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere. 2017;183:528–535. doi: 10.1016/j.chemosphere.2017.05.130. PubMed DOI
Fenga W., Yuan J., Zhang L., Hu W., Wu Z., Wang X., Huang X., Liu P., Zhang S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B Environ. 2020;277:119250. doi: 10.1016/j.apcatb.2020.119250. DOI
Biswas A., Saha S., Jana N.R. ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants. ACS Appl. Nano Mater. 2019;2:1120–1128. doi: 10.1021/acsanm.9b00107. DOI
Mistewicz K., Nowak M., Stróż D. A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials. 2019;9:580. doi: 10.3390/nano9040580. PubMed DOI PMC
Grekov A.A., Danilova S.P., Zaks P.L., Kulieva V.V., Rubanov L.A., Syrkin L.N., Chekhunova N.P., El’gard A.M. Piezoelectric elements made from antimony sulphoiodide crystals. Akust. Zurnal. 1973;19:622–623.
Hamano K., Nakamura T., Ishibashi Y., Ooyane T. Piezoelectric property of SbSI single crystal. J. Phys. Soc. Jpn. 1965;20:1886–1887. doi: 10.1143/JPSJ.20.1886. DOI
Nowak M., Mroczek P., Duka P., Kidawa A., Szperlich P., Grabowski A., Szala J., Moskal G. Using of textured polycrystalline SbSI in actuators. Sens. Actuators A. 2009;150:251–256. doi: 10.1016/j.sna.2009.01.005. DOI
Purusothaman Y., Alluri N.R., Chandrasekhar A., Kim S.-J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy. 2018;50:256–265. doi: 10.1016/j.nanoen.2018.05.058. DOI
Mistewicz K., Nowak M., Stróż D., Paszkiewicz R. SbSI nanowires for ferroelectric generators operating under shock pressure. Mater. Lett. 2016;180:15–18. doi: 10.1016/j.matlet.2016.05.093. DOI
Toroń B., Szperlich P., Kozioł M. SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors—The influence of SBSI nanowires conglomeration on piezoelectric properties. Materials. 2020;13:902. doi: 10.3390/ma13040902. PubMed DOI PMC
Mistewicz K., Matysiak W., Jesionek M., Jarka P., Kępińska M., Nowak M., Tański T., Stróż D., Szade J., Balin K., et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 2020;517:146138. doi: 10.1016/j.apsusc.2020.146138. DOI
Mistewicz K., Nowak M., Stróż D., Guiseppi-Elie A. Ferroelectric SbSI nanowires for ammonia detection at a low temperature. Talanta. 2018;189:225–232. doi: 10.1016/j.talanta.2018.06.086. PubMed DOI
Mistewicz K. Recent advances in ferroelectric nanosensors: Toward sensitive detection of gas, mechanothermal signals, and radiation. J. Nanomater. 2018;2018:2651056. doi: 10.1155/2018/2651056. DOI
Mistewicz K., Nowak M., Starczewska A., Jesionek M., Rzychoń T., Wrzalik R., Guiseppi-Elie A. Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 2016;182:78–80. doi: 10.1016/j.matlet.2016.06.073. DOI
Wang C., Zhang M., Fang Y., Chen G., Li Q., Sheng X., Xu X., Hui J., Lan Y.-Q., Fang M., et al. SbSI nanocrystals: An excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 2018;6:12166. doi: 10.1021/acssuschemeng.8b02498. DOI
Muthusamy T., Bhattacharyya A.J. Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 2016;6:105980–105987. doi: 10.1039/C6RA23750A. DOI
Tasviri M., Sajadi-Hezave Z. SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 2017;436:174–181. doi: 10.1016/j.mcat.2017.04.020. DOI
Mistewicz K., Nowak M., Paszkiewicz R., Guiseppi-Elie A. SbSI nanosensors: From gel to single nanowire devices. Nanoscale Res. Lett. 2017;12:97. doi: 10.1186/s11671-017-1854-x. PubMed DOI PMC
Nowak M., Bober Ł., Borkowski B., Kępińska M., Szperlich P., Stróż D., Sozańska M. Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires. Opt. Mater. 2013;35:2208–2216. doi: 10.1016/j.optmat.2013.06.003. DOI
Antimony Sulfide Iodide, JCPDS-International Centre for Diffraction Data, PCPDFWIN v.2.1, Card File No. 75-0781. 2000.
Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępinska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., et al. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A. 2014;210:119–130. doi: 10.1016/j.sna.2014.02.012. DOI
Pankove J.I. Optical Processes in Semiconductors. Prentice-Hall, Inc.; Englewood Cliffs, NJ, USA: 1971. [(accessed on 3 August 2020)]. Available online: https://trove.nla.gov.au/version/45414559.
Al-Qaradawi S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A. 2002;148:161–168. doi: 10.1016/S1010-6030(02)00086-2. DOI
Chalastara K., Guo F., Elouatik S., Demopoulos G.P. Tunable composition aqueous-synthesized mixed-phase TiO2 nanocrystals for photo-assisted water decontamination: Comparison of anatase, brookite and rutile photocatalysts. Catalysts. 2020;10:407. doi: 10.3390/catal10040407. DOI
Zhao Y., Fang Z.B., Feng W.H., Wang K.Q., Huang X.Y., Liu P. Hydrogen production from pure water via piezoelectric-assisted visible-light photocatalysis of CdS nanorod arrays. ChemCatChem. 2018;10:3397–3401. doi: 10.1002/cctc.201800666. DOI
Santos H.M., Lodeiro C., Capelo-Martínez J.L. The power of ultrasound. In: Capelo-Martínez J.L., editor. Ultrasound in Chemistry: Analytical Applications. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 1–16. DOI
Doche M.-L., Hihn J.-Y., Mandroyan A., Viennet R., Touyeras F. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media. Ultrason. Sonochem. 2003;10:357–362. doi: 10.1016/S1350-4177(03)00099-3. PubMed DOI
Lin E., Wu J., Qin N., Yuan B., Bao D. Silver modified barium titanate as a highly efficient piezocatalyst. Catal. Sci. Technol. 2018;8:4788–4796. doi: 10.1039/C8CY01127C. DOI
Jin C.C., Liu C.H., Liu X.C., Wang Y., Hwang H.L. Experimental and simulation study on BCTZ-based flexible energy harvesting device filled with Ag-coated Cu particles. Ceram. Int. 2018;44:17391. doi: 10.1016/j.ceramint.2018.06.204. DOI
Bi Y., Ouyang S., Umezawa N., Cao J., Ye J. Facet effect of single-crystalline Ag3PO4 submicrocrystals on photocatalytic properties. J. Am. Chem. Soc. 2011;133:6490–6492. doi: 10.1021/ja2002132. PubMed DOI
Yu C.L., Li G., Kumar S., Yang K., Jin R.C. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv. Mater. 2014;26:892–898. doi: 10.1002/adma.201304173. PubMed DOI
Fan Y., Ma W., Han D., Gan S., Dong X., Niu L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015;27:3767–3773. doi: 10.1002/adma.201500391. PubMed DOI
Hu Y., Gao X., Yu L., Wang Y., Ning J., Xu S., Lou X.W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013;52:5636–5639. doi: 10.1002/anie.201301709. PubMed DOI
Xiang G., Li T., Zhuang J., Wang X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010;46:6801–6803. doi: 10.1039/c0cc02327b. PubMed DOI
Sheikh M.U.D., Naikoo G.A., Thomas M., Bano M., Khan F. Solar-assisted photocatalytic reduction of methyl orange azo dye over porous TiO2 nanostructures. New J. Chem. 2016;40:5483–5494. doi: 10.1039/C5NJ03513A. DOI
Ghule L.A., Patil A.A., Sapnar K.B., Dhole S.D., Garadkar K.M. Photocatalytic degradation of methyl orange using ZnO nanorods. Toxicol. Environ. Chem. 2011;93:623–634. doi: 10.1080/02772248.2011.560852. DOI
Sang Y., Zhao Z., Zhao M., Hao P., Leng Y., Liu H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 2015;27:363–369. doi: 10.1002/adma.201403264. PubMed DOI
Sun M., Li D., Li W., Chen Y., Chen Z., He Y., Fu X. New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C. 2008;112:18076–18081. doi: 10.1021/jp806496d. DOI
Wang N., Pan Y., Wu S., Zhang E., Dai W. Fabrication of nanoporous copper with tunable ligaments and promising sonocatalytic performance by dealloying Cu–Y metallic glasses. RSC Adv. 2017;7:43255–43265. doi: 10.1039/C7RA08390D. DOI
Merouani S., Hamdaoui O., Rezgui Y., Guemini M. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem. 2014;21:53–59. doi: 10.1016/j.ultsonch.2013.05.008. PubMed DOI
Dai K., Chen H., Peng T., Ke D., Yi H. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere. 2007;69:1361–1367. doi: 10.1016/j.chemosphere.2007.05.021. PubMed DOI
Baiocchi C., Brussinoa M.C., Pramauro E., Prevot A.B., Palmisano L., Marci G. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int. J. Mass Spectrom. 2002;214:247–256. doi: 10.1016/S1387-3806(01)00590-5. DOI