Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
14/010/RGJ24/0015
Silesian University of Technology
PubMed
39408604
PubMed Central
PMC11476912
DOI
10.3390/ijms251910265
PII: ijms251910265
Knihovny.cz E-resources
- Keywords
- bismuth oxyiodide, bismuth triiodide, methylene blue, photocatalytic, ultrasonic irradiation,
- MeSH
- Bismuth * chemistry MeSH
- X-Ray Diffraction methods MeSH
- Photochemical Processes MeSH
- Iodides chemistry MeSH
- Catalysis MeSH
- Methylene Blue chemistry MeSH
- Nanostructures * chemistry MeSH
- Ultraviolet Rays MeSH
- Ultrasonics methods MeSH
- Ultrasonic Waves MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bismuth * MeSH
- bismuth oxychloride MeSH Browser
- Iodides MeSH
- Methylene Blue MeSH
This work describes a novel method for converting bismuth triiodide (BiI3) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI3 microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.
See more in PubMed
Wagner B., Huttner A., Bischof D., Engel A., Witte G., Heine J. Chemical surface reactivity and morphological changes of bismuth triiodide (BiI3) under different environmental conditions. Langmuir. 2020;36:6458–6464. doi: 10.1021/acs.langmuir.0c00740. PubMed DOI
Zavabeti A., Jannat A., Zhong L., Haidry A.A., Yao Z., Ou J.Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020;12:66. doi: 10.1007/s40820-020-0402-x. PubMed DOI PMC
Abdelhamid H.N. Nanocellulose-Based Materials for Water Pollutant Removal: A Review. Int. J. Mol. Sci. 2024;25:8529. doi: 10.3390/ijms25158529. PubMed DOI PMC
Wang L., Hu P., Long Y., Liu Z., He X. Recent advances in ternary two-dimensional materials: Synthesis, properties and applications. J. Mater. Chem. A. 2017;5:22855–22876. doi: 10.1039/C7TA06971E. DOI
Hong J., Chu Z., Li C., Yang W., Kawi S., Ye Q. Innovative Bi5O7I/MIL-101 (Cr) Compounds: A Leap Forward in Photocatalytic Tetracycline Removal. Int. J. Mol. Sci. 2024;25:6759. doi: 10.3390/ijms25126759. PubMed DOI PMC
Ganose A.M., Cuff M., Butler K.T., Walsh A., Scanlon D.O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016;28:1980–1984. doi: 10.1021/acs.chemmater.6b00349. PubMed DOI PMC
Arumugam M., Choi M.Y. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 2019;81:237–268. doi: 10.1016/j.jiec.2019.09.013. DOI
Meng L., Jian J., Yang D., Dan Y., Sun W., Ai Q., Zhang Y., Zhou H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int. J. Mol. Sci. 2024;25:6653. doi: 10.3390/ijms25126653. PubMed DOI PMC
Ye L., Tian L., Peng T., Zan L. Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. J. Mater. Chem. 2011;21:12479–12484. doi: 10.1039/c1jm11005e. DOI
Matiur R.M., Noman M., Kato S., Soga T. A novel modest synthesis of device applicable flakes based stable BiOI film by the oxidation of BiI3 film. J. Alloys Compd. 2021;873:159715. doi: 10.1016/j.jallcom.2021.159715. DOI
Huang H., Liu K., Zhang Y., Chen K., Zhang Y., Tian N. Tunable 3D hierarchical graphene–BiOI nanoarchitectures: Their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv. 2014;4:49386–49394. doi: 10.1039/C4RA07533A. DOI
Zhang K.-L., Liu C.-M., Huang F.-Q., Zheng C., Wang W.-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 2006;68:125–129. doi: 10.1016/j.apcatb.2006.08.002. DOI
Di J., Xia J., Li H., Guo S., Dai S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy. 2017;41:172–192. doi: 10.1016/j.nanoen.2017.09.008. DOI
Sun Z., Amrillah T. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale. 2024;16:5079–5106. doi: 10.1039/D3NR06559F. PubMed DOI
Zhou L., Wang W., Zhang L. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A Chem. 2007;268:195–200. doi: 10.1016/j.molcata.2006.12.026. DOI
An C., Wang T., Wang S., Chen X., Han X., Wu S., Deng Q., Zhao L., Hu N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023;98:106503. doi: 10.1016/j.ultsonch.2023.106503. PubMed DOI PMC
Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004;11:47–55. doi: 10.1016/j.ultsonch.2004.01.037. PubMed DOI
Li Z., Dong J., Zhang H., Zhang Y., Wang H., Cui X., Wang Z. Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics. Nanoscale Adv. 2021;3:41–72. doi: 10.1039/D0NA00753F. PubMed DOI PMC
Foroughi F., Lamb J.J., Burheim O.S., Pollet B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts. 2021;11:284. doi: 10.3390/catal11020284. DOI
Gaudino E.C., Cravotto G., Manzoli M., Tabasso S. Sono- and mechanochemical technologies in the catalytic conversion of biomass. Chem. Soc. Rev. 2020;50:1785–1812. doi: 10.1039/D0CS01152E. PubMed DOI
Song G., Ma S., Tang G., Wang X. Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010;364:99–104. doi: 10.1016/j.colsurfa.2010.04.043. DOI
Xu H., Zeiger B.W., Suslick K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013;42:2555–2567. doi: 10.1039/C2CS35282F. PubMed DOI
Frecentese F., Sodano F., Corvino A., Schiano M.E., Magli E., Albrizio S., Sparaco R., Andreozzi G., Nieddu M., Rimoli M.G. The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. Int. J. Mol. Sci. 2023;24:10722. doi: 10.3390/ijms241310722. PubMed DOI PMC
Crovetto A., Hajijafarassar A., Hansen O., Seger B., Chorkendorff I., Vesborg P.C. Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorbers. Chem. Mater. 2020;32:3385–3395. doi: 10.1021/acs.chemmater.9b04925. DOI
Matiur R.M., Abuelwafa A.A., Putri A.A., Kato S., Kishi N., Soga T. Annealing effects on structural and photovoltaic properties of the dip-SILAR-prepared bismuth oxyhalides (BiOI, Bi7O9I3, Bi5O7I) films. SN Appl. Sci. 2021;3:138. doi: 10.1007/s42452-021-04153-y. DOI
Sun H., Yang D., Liu Y., Zhu X. Highly Flexible X-ray Detectors Based on Pure Inorganic Metal Iodide Polycrystalline Thin Films as Photon-to-Charge Conversion Layers. ACS Appl. Electron. Mater. 2019;1:2637–2645. doi: 10.1021/acsaelm.9b00598. DOI
Hojamberdiev M., Vargas R., Madriz L., Yubuta K., Kadirova Z.C., Shaislamov U., Sannegowda L.K., Jędruchniewicz K., Typek R., Teshima K., et al. Unveiling the origin of the efficient photocatalytic degradation of nitazoxanide over bismuth (oxy)iodide crystalline phases. Environ. Sci. Nano. 2023;11:336–350. doi: 10.1039/D3EN00548H. DOI
Prasad M.D., Sangani L.D.V., Batabyal S.K., Krishna M.G. Single and twinned plates of 2D layered BiI3 for use as nanoscale pressure sensors. CrystEngComm. 2018;20:4857–4866. doi: 10.1039/C8CE00823J. DOI
Wilczewska P., Bielicka-Giełdoń A., Szczodrowski K., Malankowska A., Ryl J., Tabaka K., Siedlecka E.M. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts. 2021;11:312. doi: 10.3390/catal11030312. DOI
Patterson A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. B. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI
Nowak M., Kauch B., Szperlich P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009;80:046107. doi: 10.1063/1.3103603. PubMed DOI
Hung P.T., Hien V.X., Hoat P.D., Lee S., Lee J.-H., Kim J.-J., Heo Y.-W. Photo induced NO2 sensing properties of bismuth triiodide (BiI3) nanoplates at room temperature. Scr. Mater. 2019;172:17–22. doi: 10.1016/j.scriptamat.2019.07.001. DOI
Madelung O. Ternary Compounds, Organic Semiconductors. Landolt-Börnstein—Group III Condensed Matter. 2000. [(accessed on 1 September 2024)]. p. 1. Available online: https://materials.springer.com/bp/docs/978-3-540-31362-5.
Dheyab M.A., Aziz A.A., Jameel M.S., Khaniabadi P.M., Mehrdel B. Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason. Sonochemistry. 2019;64:104865. doi: 10.1016/j.ultsonch.2019.104865. PubMed DOI
Altay R., Sadaghiani A.K., Sevgen M.I., Şişman A., Koşar A. Numerical and Experimental Studies on the Effect of Surface Roughness and Ultrasonic Frequency on Bubble Dynamics in Acoustic Cavitation. Energies. 2020;13:1126. doi: 10.3390/en13051126. DOI
Ehsani M., Zhu N., Doan H., Lohi A., Abdelrasoul A. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation. Ultrason. Sonochem. 2021;77:105697. doi: 10.1016/j.ultsonch.2021.105697. PubMed DOI PMC
Alshehri A.A., Malik M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019;30:16156–16173. doi: 10.1007/s10854-019-01985-8. DOI
Mohamed M.M., Al-Esaimi M.M. Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. J. Mol. Catal. A Chem. 2006;255:53–61. doi: 10.1016/j.molcata.2006.03.071. DOI
Nolan N.T., Synnott D.W., Seery M.K., Hinder S.J., Van Wassenhoven A., Pillai S.C. Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J. Hazard. Mater. 2011;211–212:88–94. doi: 10.1016/j.jhazmat.2011.08.074. PubMed DOI
Mistewicz K., Kępińska M., Nowak M., Sasiela A., Zubko M., Stróż D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials. 2020;13:4803. doi: 10.3390/ma13214803. PubMed DOI PMC
Jabeen S., Iqbal J., Arshad A., Awan M., Warsi M. (In1−xFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater. Chem. Phys. 2019;243:122516. doi: 10.1016/j.matchemphys.2019.122516. DOI
Jo W.-K., Selvam N.C.S. Synthesis of GO supported Fe2O3–TiO2 nanocomposites for enhanced visible-light photocatalytic applications. Dalton Trans. 2015;44:16024–16035. doi: 10.1039/C5DT02983J. PubMed DOI
Sadeghzadeh-Attar A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells. 2018;183:16–24. doi: 10.1016/j.solmat.2018.03.046. DOI
Kumar S., Parlett C.M., Isaacs M.A., Jowett D.V., Douthwaite R.E., Cockett M.C., Lee A.F. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Appl. Catal. B Environ. 2016;189:226–232. doi: 10.1016/j.apcatb.2016.02.038. DOI
Lin J., Luo Z., Liu J., Li P. Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater. Sci. Semicond. Proc. 2018;87:24–31. doi: 10.1016/j.mssp.2018.07.003. DOI
Hu L.-F., Li R., He J., Da L.-G., Lv W., Hu J.-S. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation. J. Nanophotonics. 2015;9:093041. doi: 10.1117/1.JNP.9.093041. DOI
Jamal R., Osman Y., Rahman A., Ali A., Zhang Y., Abdiryim T. Solid-State Synthesis and Photocatalytic Activity of Polyterthiophene Derivatives/TiO2 Nanocomposites. Materials. 2014;7:3786–3801. doi: 10.3390/ma7053786. PubMed DOI PMC
Khaksar M., Amini M., Boghaei D.M., Chae K.H., Gautam S. Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 2015;72:1–5. doi: 10.1016/j.catcom.2015.08.023. DOI
Kulis-Kapuscinska A., Kwoka M., Borysiewicz M.A., Wojciechowski T., Licciardello N., Sgarzi M., Cuniberti G. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. Nanotechnology. 2023;34:155702. doi: 10.1088/1361-6528/aca910. PubMed DOI
Wang X.-Q., Han S.-F., Zhang Q.-W., Zhang N., Zhao D.-D. Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. MATEC Web Conf. 2018;238:03006. doi: 10.1051/matecconf/201823803006. DOI
Huang F., Chen L., Wang H., Yan Z. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem. Eng. J. 2010;162:250–256. doi: 10.1016/j.cej.2010.05.041. DOI