• This record comes from PubMed

Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications

. 2024 Sep 24 ; 25 (19) : . [epub] 20240924

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
14/010/RGJ24/0015 Silesian University of Technology

This work describes a novel method for converting bismuth triiodide (BiI3) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI3 microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.

See more in PubMed

Wagner B., Huttner A., Bischof D., Engel A., Witte G., Heine J. Chemical surface reactivity and morphological changes of bismuth triiodide (BiI3) under different environmental conditions. Langmuir. 2020;36:6458–6464. doi: 10.1021/acs.langmuir.0c00740. PubMed DOI

Zavabeti A., Jannat A., Zhong L., Haidry A.A., Yao Z., Ou J.Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020;12:66. doi: 10.1007/s40820-020-0402-x. PubMed DOI PMC

Abdelhamid H.N. Nanocellulose-Based Materials for Water Pollutant Removal: A Review. Int. J. Mol. Sci. 2024;25:8529. doi: 10.3390/ijms25158529. PubMed DOI PMC

Wang L., Hu P., Long Y., Liu Z., He X. Recent advances in ternary two-dimensional materials: Synthesis, properties and applications. J. Mater. Chem. A. 2017;5:22855–22876. doi: 10.1039/C7TA06971E. DOI

Hong J., Chu Z., Li C., Yang W., Kawi S., Ye Q. Innovative Bi5O7I/MIL-101 (Cr) Compounds: A Leap Forward in Photocatalytic Tetracycline Removal. Int. J. Mol. Sci. 2024;25:6759. doi: 10.3390/ijms25126759. PubMed DOI PMC

Ganose A.M., Cuff M., Butler K.T., Walsh A., Scanlon D.O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016;28:1980–1984. doi: 10.1021/acs.chemmater.6b00349. PubMed DOI PMC

Arumugam M., Choi M.Y. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 2019;81:237–268. doi: 10.1016/j.jiec.2019.09.013. DOI

Meng L., Jian J., Yang D., Dan Y., Sun W., Ai Q., Zhang Y., Zhou H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int. J. Mol. Sci. 2024;25:6653. doi: 10.3390/ijms25126653. PubMed DOI PMC

Ye L., Tian L., Peng T., Zan L. Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. J. Mater. Chem. 2011;21:12479–12484. doi: 10.1039/c1jm11005e. DOI

Matiur R.M., Noman M., Kato S., Soga T. A novel modest synthesis of device applicable flakes based stable BiOI film by the oxidation of BiI3 film. J. Alloys Compd. 2021;873:159715. doi: 10.1016/j.jallcom.2021.159715. DOI

Huang H., Liu K., Zhang Y., Chen K., Zhang Y., Tian N. Tunable 3D hierarchical graphene–BiOI nanoarchitectures: Their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv. 2014;4:49386–49394. doi: 10.1039/C4RA07533A. DOI

Zhang K.-L., Liu C.-M., Huang F.-Q., Zheng C., Wang W.-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 2006;68:125–129. doi: 10.1016/j.apcatb.2006.08.002. DOI

Di J., Xia J., Li H., Guo S., Dai S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy. 2017;41:172–192. doi: 10.1016/j.nanoen.2017.09.008. DOI

Sun Z., Amrillah T. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale. 2024;16:5079–5106. doi: 10.1039/D3NR06559F. PubMed DOI

Zhou L., Wang W., Zhang L. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A Chem. 2007;268:195–200. doi: 10.1016/j.molcata.2006.12.026. DOI

An C., Wang T., Wang S., Chen X., Han X., Wu S., Deng Q., Zhao L., Hu N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023;98:106503. doi: 10.1016/j.ultsonch.2023.106503. PubMed DOI PMC

Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004;11:47–55. doi: 10.1016/j.ultsonch.2004.01.037. PubMed DOI

Li Z., Dong J., Zhang H., Zhang Y., Wang H., Cui X., Wang Z. Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics. Nanoscale Adv. 2021;3:41–72. doi: 10.1039/D0NA00753F. PubMed DOI PMC

Foroughi F., Lamb J.J., Burheim O.S., Pollet B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts. 2021;11:284. doi: 10.3390/catal11020284. DOI

Gaudino E.C., Cravotto G., Manzoli M., Tabasso S. Sono- and mechanochemical technologies in the catalytic conversion of biomass. Chem. Soc. Rev. 2020;50:1785–1812. doi: 10.1039/D0CS01152E. PubMed DOI

Song G., Ma S., Tang G., Wang X. Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010;364:99–104. doi: 10.1016/j.colsurfa.2010.04.043. DOI

Xu H., Zeiger B.W., Suslick K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013;42:2555–2567. doi: 10.1039/C2CS35282F. PubMed DOI

Frecentese F., Sodano F., Corvino A., Schiano M.E., Magli E., Albrizio S., Sparaco R., Andreozzi G., Nieddu M., Rimoli M.G. The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. Int. J. Mol. Sci. 2023;24:10722. doi: 10.3390/ijms241310722. PubMed DOI PMC

Crovetto A., Hajijafarassar A., Hansen O., Seger B., Chorkendorff I., Vesborg P.C. Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorbers. Chem. Mater. 2020;32:3385–3395. doi: 10.1021/acs.chemmater.9b04925. DOI

Matiur R.M., Abuelwafa A.A., Putri A.A., Kato S., Kishi N., Soga T. Annealing effects on structural and photovoltaic properties of the dip-SILAR-prepared bismuth oxyhalides (BiOI, Bi7O9I3, Bi5O7I) films. SN Appl. Sci. 2021;3:138. doi: 10.1007/s42452-021-04153-y. DOI

Sun H., Yang D., Liu Y., Zhu X. Highly Flexible X-ray Detectors Based on Pure Inorganic Metal Iodide Polycrystalline Thin Films as Photon-to-Charge Conversion Layers. ACS Appl. Electron. Mater. 2019;1:2637–2645. doi: 10.1021/acsaelm.9b00598. DOI

Hojamberdiev M., Vargas R., Madriz L., Yubuta K., Kadirova Z.C., Shaislamov U., Sannegowda L.K., Jędruchniewicz K., Typek R., Teshima K., et al. Unveiling the origin of the efficient photocatalytic degradation of nitazoxanide over bismuth (oxy)iodide crystalline phases. Environ. Sci. Nano. 2023;11:336–350. doi: 10.1039/D3EN00548H. DOI

Prasad M.D., Sangani L.D.V., Batabyal S.K., Krishna M.G. Single and twinned plates of 2D layered BiI3 for use as nanoscale pressure sensors. CrystEngComm. 2018;20:4857–4866. doi: 10.1039/C8CE00823J. DOI

Wilczewska P., Bielicka-Giełdoń A., Szczodrowski K., Malankowska A., Ryl J., Tabaka K., Siedlecka E.M. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts. 2021;11:312. doi: 10.3390/catal11030312. DOI

Patterson A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. B. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI

Nowak M., Kauch B., Szperlich P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009;80:046107. doi: 10.1063/1.3103603. PubMed DOI

Hung P.T., Hien V.X., Hoat P.D., Lee S., Lee J.-H., Kim J.-J., Heo Y.-W. Photo induced NO2 sensing properties of bismuth triiodide (BiI3) nanoplates at room temperature. Scr. Mater. 2019;172:17–22. doi: 10.1016/j.scriptamat.2019.07.001. DOI

Madelung O. Ternary Compounds, Organic Semiconductors. Landolt-Börnstein—Group III Condensed Matter. 2000. [(accessed on 1 September 2024)]. p. 1. Available online: https://materials.springer.com/bp/docs/978-3-540-31362-5.

Dheyab M.A., Aziz A.A., Jameel M.S., Khaniabadi P.M., Mehrdel B. Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason. Sonochemistry. 2019;64:104865. doi: 10.1016/j.ultsonch.2019.104865. PubMed DOI

Altay R., Sadaghiani A.K., Sevgen M.I., Şişman A., Koşar A. Numerical and Experimental Studies on the Effect of Surface Roughness and Ultrasonic Frequency on Bubble Dynamics in Acoustic Cavitation. Energies. 2020;13:1126. doi: 10.3390/en13051126. DOI

Ehsani M., Zhu N., Doan H., Lohi A., Abdelrasoul A. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation. Ultrason. Sonochem. 2021;77:105697. doi: 10.1016/j.ultsonch.2021.105697. PubMed DOI PMC

Alshehri A.A., Malik M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019;30:16156–16173. doi: 10.1007/s10854-019-01985-8. DOI

Mohamed M.M., Al-Esaimi M.M. Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. J. Mol. Catal. A Chem. 2006;255:53–61. doi: 10.1016/j.molcata.2006.03.071. DOI

Nolan N.T., Synnott D.W., Seery M.K., Hinder S.J., Van Wassenhoven A., Pillai S.C. Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J. Hazard. Mater. 2011;211–212:88–94. doi: 10.1016/j.jhazmat.2011.08.074. PubMed DOI

Mistewicz K., Kępińska M., Nowak M., Sasiela A., Zubko M., Stróż D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials. 2020;13:4803. doi: 10.3390/ma13214803. PubMed DOI PMC

Jabeen S., Iqbal J., Arshad A., Awan M., Warsi M. (In1−xFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater. Chem. Phys. 2019;243:122516. doi: 10.1016/j.matchemphys.2019.122516. DOI

Jo W.-K., Selvam N.C.S. Synthesis of GO supported Fe2O3–TiO2 nanocomposites for enhanced visible-light photocatalytic applications. Dalton Trans. 2015;44:16024–16035. doi: 10.1039/C5DT02983J. PubMed DOI

Sadeghzadeh-Attar A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells. 2018;183:16–24. doi: 10.1016/j.solmat.2018.03.046. DOI

Kumar S., Parlett C.M., Isaacs M.A., Jowett D.V., Douthwaite R.E., Cockett M.C., Lee A.F. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Appl. Catal. B Environ. 2016;189:226–232. doi: 10.1016/j.apcatb.2016.02.038. DOI

Lin J., Luo Z., Liu J., Li P. Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater. Sci. Semicond. Proc. 2018;87:24–31. doi: 10.1016/j.mssp.2018.07.003. DOI

Hu L.-F., Li R., He J., Da L.-G., Lv W., Hu J.-S. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation. J. Nanophotonics. 2015;9:093041. doi: 10.1117/1.JNP.9.093041. DOI

Jamal R., Osman Y., Rahman A., Ali A., Zhang Y., Abdiryim T. Solid-State Synthesis and Photocatalytic Activity of Polyterthiophene Derivatives/TiO2 Nanocomposites. Materials. 2014;7:3786–3801. doi: 10.3390/ma7053786. PubMed DOI PMC

Khaksar M., Amini M., Boghaei D.M., Chae K.H., Gautam S. Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 2015;72:1–5. doi: 10.1016/j.catcom.2015.08.023. DOI

Kulis-Kapuscinska A., Kwoka M., Borysiewicz M.A., Wojciechowski T., Licciardello N., Sgarzi M., Cuniberti G. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. Nanotechnology. 2023;34:155702. doi: 10.1088/1361-6528/aca910. PubMed DOI

Wang X.-Q., Han S.-F., Zhang Q.-W., Zhang N., Zhao D.-D. Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. MATEC Web Conf. 2018;238:03006. doi: 10.1051/matecconf/201823803006. DOI

Huang F., Chen L., Wang H., Yan Z. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem. Eng. J. 2010;162:250–256. doi: 10.1016/j.cej.2010.05.041. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...