Comparison of pancreatic microcirculation profiles in spontaneously hypertensive rats and Wistar-kyoto rats by laser doppler and wavelet transform analysis
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
33129246
PubMed Central
PMC8549876
DOI
10.33549/physiolres.934448
PII: 934448
Knihovny.cz E-zdroje
- MeSH
- endotelin-1 metabolismus MeSH
- hypertenze patofyziologie MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- laser doppler flowmetrie metody MeSH
- mikrocirkulace MeSH
- modely nemocí na zvířatech MeSH
- oxid dusnatý metabolismus MeSH
- pankreas krevní zásobení patofyziologie MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- vlnková analýza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- endotelin-1 MeSH
- oxid dusnatý MeSH
Pancreatic microcirculatory dysfunction emerged as a novel mechanism in the development of hypertension. However, the changes of pancreatic microcirculation profiles in hypertension remain unknown. Pancreatic microcirculatory blood distribution pattern and microvascular vasomotion of spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (WKYs) were determined by laser Doppler. Wavelet transform analysis was performed to convert micro-hemodynamic signals into time-frequency domains, based on which amplitude spectral scalograms were constructed. The amplitudes of characteristic oscillators were compared between SHRs and WKYs. The expression of eNOS was determined by immunohistochemistry, and plasma nitrite/nitrate levels were measured by Griess reaction. Additionally, endothelin-1, malondialdehyde, superoxide dismutase and interleukin-6 were determined by enzyme-linked immunosorbent assay. SHRs exhibited a lower scale blood distribution pattern with decreased average blood perfusion, frequency and amplitude. Wavelet transform spectral analysis revealed significantly reduced amplitudes of endothelial oscillators. Besides reduced expression of eNOS, the blood microcirculatory chemistry complements micro-hemodynamic profiles as demonstrated by an increase in plasma nitrite/nitrate, endothelin-1, malondialdehyde, interleukin-6 and a decrease of superoxide dismutase in SHRs. Here, we described abnormal pancreatic microcirculation profiles in SHRs, including disarranged blood distribution pattern, impaired microvascular vasomotion and reduced amplitudes of endothelial oscillators.
Zobrazit více v PubMed
AHMEDA AF, RAE MG, ANWEIGI LM, AL OTAIBI MF, AL-MASRI AA, JOHNS EJ. The effect of superoxide dismutase enzyme inhibition on renal microcirculation of spontaneously hypertensive-stroke prone and Wistar rats. Physiol Res. 2018;67:535–541. doi: 10.33549/physiolres.933655. PubMed DOI
ALEKSANDRIN VV, IVANOV AV, VIRUS ED, BULGAKOVA PO, KUBATIEV AA. Application of wavelet analysis to detect dysfunction in cerebral blood flow autoregulation during experimental hyperhomocysteinaemia. Lasers Med Sci. 2018;33:1327–1333. doi: 10.1007/s10103-018-2485-x. PubMed DOI
CHAN AHW, SCHMID-SCHONBEIN GW. Pancreatic source of protease activity in the spontaneously hypertensive rat and its reduction during temporary food restriction. Microcirculation. 2019;26:e12548. doi: 10.1111/micc.12548. PubMed DOI PMC
DALYS GBD, COLLABORATORS H. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1603–1658. PubMed PMC
De BOER MP, MEIJER RI, WIJNSTOK NJ, JONK AM, HOUBEN AJ, STEHOUWER CD, SMULDERS YM, ERINGA EC, SERNE EH. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation. 2012;19:5–18. doi: 10.1111/j.1549-8719.2011.00130.x. PubMed DOI
DEBBABI H, UZAN L, MOURAD JJ, SAFAR M, LEVY BI, TIBIRICA E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–483. doi: 10.1016/j.amjhyper.2005.10.021. PubMed DOI
DELANO FA, SCHMID-SCHONBEIN GW. Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension. 2008;52:415–423. doi: 10.1161/HYPERTENSIONAHA.107.104356. PubMed DOI PMC
DELANO FA, ZHANG H, TRAN EE, ZHANG C, SCHMID-SCHONBEIN GW. A new hypothesis for insulin resistance in hypertension due to receptor cleavage. Expert Rev Endocrinol Metab. 2010;5:149–158. doi: 10.1586/eem.09.64. PubMed DOI PMC
DEROSA G, D’ANGELO A, CICCARELLI L, PICCINNI MN, PRICOLO F, SALVADEO S, MONTAGNA L, GRAVINA A, FERRARI I, GALLI S, PANIGA S, TINELLI C, CICERO AF. Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium. 2006;13:227–231. doi: 10.1080/10623320600780942. PubMed DOI
DOMINGUETI CP, DUSSE LM, CARVALHO M, De SOUSA LP, GOMES KB, FERNANDES AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30:738–745. doi: 10.1016/j.jdiacomp.2015.12.018. PubMed DOI
EIBL G, HOTZ HG, FAULHABER J, KIRCHENGAST M, BUHR HJ, FOITZIK T. Effect of endothelin and endothelin receptor blockade on capillary permeability in experimental pancreatitis. Gut. 2000;46:390–394. doi: 10.1136/gut.46.3.390. PubMed DOI PMC
FORSTERMANN U, MUNZEL T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–1714. doi: 10.1161/CIRCULATIONAHA.105.602532. PubMed DOI
GKALIAGKOUSI E, GAVRIILAKI E, TRIANTAFYLLOU A, DOUMA S. Clinical significance of endothelial dysfunction in essential hypertension. Curr Hypertens Rep. 2015;17:85. doi: 10.1007/s11906-015-0596-3. PubMed DOI
GRADIN K, PERSSON B. Endothelin A receptor blockade improves endothelium-dependent relaxation in obese woman. Physiol Res. 2018;67:S167–S174. doi: 10.33549/physiolres.933813. PubMed DOI
GUTTERMAN DD, CHABOWSKI DS, KADLEC AO, DURAND MJ, FREED JK, AIT-AISSA K, BEYER AM. The human microcirculation: regulation of flow and beyond. Circ Res. 2016;118:157–172. doi: 10.1161/CIRCRESAHA.115.305364. PubMed DOI PMC
KHULLAR M, RELAN V, SEHRAWAT BS. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2004;43:e7–8. doi: 10.1161/01.HYP.0000111210.34843.b6. author reply e7–8. PubMed DOI
KLOZA M, BARANOWSKA-KUCZKO M, TOCZEK M, KUSACZUK M, SADOWSKA O, KASACKA I, KOZLOWSKA H. Modulation of cardiovascular function in primary hypertension in rat by SKA-31, an activator of KCa2.x and KCa3.1 channels. Int J Mol Sci. 2019;20:4118. doi: 10.3390/ijms20174118. PubMed DOI PMC
KOBAYASHI N, DELANO FA, SCHMID-SCHONBEIN GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005;25:2114–2121. doi: 10.1161/01.ATV.0000178993.13222.f2. PubMed DOI
KONG X, LI W, GUO LQ, ZHANG JX, CHEN XP, LIU WY, YANG JR. Sesamin enhances nitric oxide bioactivity in aortas of spontaneously hypertensive rats. Ther Adv Cardiovasc Dis. 2015;9:314–324. doi: 10.1177/1753944715586178. PubMed DOI
LANCASTER G, STEFANOVSKA A, PESCE M, MARCO VEZZONI G, LOGGINI B, PINGITORE R, GHIARA F, BARACHINI P, CERVADORO G, ROMANELLI M, ROSSI M. Dynamic markers based on blood perfusion fluctuations for selecting skin melanocytic lesions for biopsy. Sci Rep. 2015;5:12825. doi: 10.1038/srep12825. PubMed DOI PMC
LAPI D, MASTANTUONO T, Di MARO M, VARANINI M, COLANTUONI A. Low-frequency components in rat pial arteriolar rhythmic diameter changes. J Vasc Res. 2017;54:344–358. doi: 10.1159/000478984. PubMed DOI
LEVY BI, AMBROSIO G, PRIES AR, STRUIJKER-BOUDIER HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–740. doi: 10.1161/hc3101.091158. PubMed DOI
LIU M, ZHANG X, LI A, ZHANG X, WANG B, LI B, LIU S, LI H, XIU R. Insulin treatment restores islet microvascular vasomotion function in diabetic mice. J Diabetes. 2017a;9:958–971. doi: 10.1111/1753-0407.12516. PubMed DOI
LIU M, ZHANG X, WANG B, WU Q, LI B, LI A, ZHANG H, XIU R. Functional status of microvascular vasomotion is impaired in spontaneously hypertensive rat. Sci Rep. 2017b;7:17080. doi: 10.1038/s41598-017-17013-w. PubMed DOI PMC
LIU M, ZHANG X, LI B, WANG B, WU Q, SHANG F, LI A, LI H, XIU R. Laser Doppler: a tool for measuring pancreatic islet microvascular vasomotion in vivo. J Vis Exp. 2018;3:e56028. doi: 10.3791/56028. PubMed DOI PMC
MARTINEZ-LEMUS LA. The dynamic structure of arterioles. Basic Clin Pharmacol Toxicol. 2012;110:5–11. doi: 10.1111/j.1742-7843.2011.00813.x. PubMed DOI PMC
MASTANTUONO T, STARITA N, BATTILORO L, Di MARO M, CHIURAZZI M, NASTI G, MUSCARIELLO E, CESARELLI M, IUPPARIELLO L, D’ADDIO G, GORBACH A, COLANTUONI A, LAPI D. Laser speckle imaging of rat pial microvasculature during hypoperfusion-reperfusion damage. Front Cell Neurosci. 2017;11:298. doi: 10.3389/fncel.2017.00298. PubMed DOI PMC
NICKENIG G, STABLEIN A, WASSMANN S, WYEN C, MULLER C, BOHM M. Acute effects of ACE inhibition on coronary endothelial dysfunction. J Renin Angiotensin Aldosterone Syst. 2000;1:361–364. doi: 10.3317/jraas.2000.067. PubMed DOI
PELELI M, ZOLLBRECHT C, MONTENEGRO MF, HEZEL M, ZHONG J, PERSSON EG, HOLMDAHL R, WEITZBERG E, LUNDBERG JO, CARLSTROM M. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis. Free Radic Biol Med. 2016;99:472–484. doi: 10.1016/j.freeradbiomed.2016.09.004. PubMed DOI
PLOTNIKOV MB, ALIEV OI, SIDEKHMENOVA AV, SHAMANAEV AY, ANISHCHENKO AM, FOMINA TI, PLOTNIKOVA TM, ARKHIPOV AM. Effect of p-tyrosol on hemorheological parameters and cerebral capillary network in young spontaneously hypertensive rats. Microvasc Res. 2018;119:91–97. doi: 10.1016/j.mvr.2018.04.005. PubMed DOI
POPA SO, FERRARI M, ANDREOZZI GM, MARTINI R, BAGNO A. Wavelet analysis of skin perfusion to assess the effects of FREMS therapy before and after occlusive reactive hyperemia. Med Eng Phys. 2015;37:1111–1115. doi: 10.1016/j.medengphy.2015.08.016. PubMed DOI
REDON J, OLIVA MR, TORMOS C, GINER V, CHAVES J, IRADI A, SAEZ GT. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2003;41:1096–1101. doi: 10.1161/01.HYP.0000068370.21009.38. PubMed DOI
RISLER NR, CRUZADO MC, MIATELLO RM. Vascular remodeling in experimental hypertension. ScientificWorldJournal. 2005;5:959–971. doi: 10.1100/tsw.2005.122. PubMed DOI PMC
ROSENBLUM WI. Endothelium-dependent responses in the microcirculation observed in vivo. Acta Physiol (Oxf) 2018;224:e13111. doi: 10.1111/apha.13111. PubMed DOI
SEGAL SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12:33–45. doi: 10.1080/10739680590895028. PubMed DOI
SERNE EH, GANS RO, TER MAATEN JC, TANGELDER GJ, DONKER AJ, STEHOUWER CD. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238–242. doi: 10.1161/01.HYP.38.2.238. PubMed DOI
SMIRNI S, MacDONALD MP, ROBERTSON CP, McNAMARA PM, O’GORMAN S, LEAHY MJ, KHAN F. Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics. J Biomed Opt. 2018;23:1–13. doi: 10.1117/1.JBO.23.7.076006. PubMed DOI
STEFANOVSKA A, BRACIC M, KVERNMO HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng. 1999;46:1230–1239. doi: 10.1109/10.790500. PubMed DOI
STRUIJKER-BOUDIER HA, ROSEI AE, BRUNEVAL P, CAMICI PG, CHRIST F, HENRION D, LEVY BI, PRIES A, VANOVERSCHELDE JL. Evaluation of the microcirculation in hypertension and cardiovascular disease. Eur Heart J. 2007;28:2834–2840. doi: 10.1093/eurheartj/ehm448. PubMed DOI
SUZUKI K, MASAWA N, SAKATA N, TAKATAMA M. Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J Stroke Cerebrovasc Dis. 2003;12:8–16. doi: 10.1053/jscd.2003.1. PubMed DOI
TOUSOULIS D, ANTONIADES C, KOUMALLOS N, MARINOU K, STEFANADI E, LATSIOS G, STEFANADIS C. Novel therapies targeting vascular endothelium. Endothelium. 2006;13:411–421. doi: 10.1080/10623320601061714. PubMed DOI
TRAN ED, SCHMID-SCHONBEIN GW. An in-vivo analysis of capillary stasis and endothelial apoptosis in a model of hypertension. Microcirculation. 2007;14:793–804. doi: 10.1080/10739680701419992. PubMed DOI
TREJO-MORENO C, MENDEZ-MARTINEZ M, ZAMILPA A, JIMENEZ-FERRER E, PEREZ-GARCIA MD, MEDINA-CAMPOS ON, PEDRAZA-CHAVERRI J, SANTANA MA, ESQUIVEL-GUADARRAMA FR, CASTILLO A, CERVANTES-TORRES J, FRAGOSO G, ROSAS-SALGADO G. Cucumis sativus aqueous fraction inhibits angiotensin II-induced inflammation and oxidative stress in vitro. Nutrients. 2018;10:E276. doi: 10.3390/nu10030276. PubMed DOI PMC
VICTOR VM, NUNEZ C, D’OCON P, TAYLOR CT, ESPLUGUES JV, MONCADA S. Regulation of oxygen distribution in tissues by endothelial nitric oxide. Circ Res. 2009;104:1178–1183. doi: 10.1161/CIRCRESAHA.109.197228. PubMed DOI
WANG B, LI BW, LI HW, LI AL, YUAN XC, WANG Q, XIU RJ. Enhanced matrix metalloproteinases-2 activates aortic endothelial hypermeability, apoptosis and vascular rarefaction in spontaneously hypertensive rat. Clin Hemorheol Microcirc. 2014;57:325–338. doi: 10.3233/CH-131713. PubMed DOI
ZHOU ZG, CHEN YD. Influencing factors of pancreatic microcirculatory impairment in acute panceatitis. World J Gastroenterol. 2002;8:406–412. doi: 10.3748/wjg.v8.i3.406. PubMed DOI PMC