Tryptophan catabolism to serotonin and kynurenine in women undergoing in-vitro fertilization
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33138619
PubMed Central
PMC8549870
DOI
10.33549/physiolres.934435
PII: 934435
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- endometrióza metabolismus patologie MeSH
- fertilizace in vitro metody MeSH
- indukce ovulace metody MeSH
- kynurenin metabolismus MeSH
- lidé MeSH
- průřezové studie MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- tryptofan metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kynurenin MeSH
- serotonin MeSH
- tryptofan MeSH
This cross-sectional clinical study was designed to explore the impact of tryptophan-kynurenine and tryptophan-serotonin (5 HT) pathways on reproductive performance during in vitro fertilization (IVF). Paired serum and follicular fluid (FF) samples were obtained from 64 consecutive IVF patients. The analysis was done by using LC-MS/MS. Ovarian hyperstimulation resulted in decreased serum tryptophan (p<0.004), 5-HT (p<0.049) and kynurenine (p<0.001). FF levels of tryptophan (R=0.245, p<0.051), kynurenine (R=0.556, p<0.001) and 5-HT (R=0.523, p<0.001) were positively related to their respective serum levels. Clinical pregnancy was associated with higher serum 5-HT (p<0.045) and FF 5-HT (p<0.020) and lower kynurenine to 5-HT ratio (p<0.024). Chemical pregnancy was also positively related to FF 5-HT (R=0.362, p<0.024). Moreover, there was a direct relationship of the number of mature oocytes to the FF 5-HT (R=0.363, p<0.020) but it was inversely related to FF tryptophan to 5-HT and FF kynurenine to 5-HT ratios (R=-0.389, p<0.016 and R=-0.337, p<0.036, respectively). Multivariate logistic regression revealed that the number of mature oocytes was significantly influenced by FF 5-HT (?=0.473, p<0.001). In IVF patients ovarian hyperstimulation results in a reduction of the availability of tryptophan to catabolic pathways to kynurenine and 5-HT. Outcome measures improved significantly when 5-HT predominated over kynurenine.
Zobrazit více v PubMed
AMIREAULT P, DUBE F. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol Pharmacol. 2005;68:1678–1687. doi: 10.1124/mol.104.010124. PubMed DOI
AMIREAULT P, DUBE F. Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol Reprod. 2005;73:358–365. doi: 10.1095/biolreprod.104.039313. PubMed DOI
BADAWY AA. Effects of pregnancy on tryptophan metabolism and disposition in the rat. Biochem J. 1988;255:369–372. PubMed PMC
BADAWY AA. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35 doi: 10.1042/BSR20150197. PubMed DOI PMC
BODIS J, TOROK A, TINNEBERG HR, HANF V, PAPENFUSS F, SCHWARZ H. Serotonin induces progesterone release from human granulosa cells in a superfused granulosa cell system. Arch Gynecol Obstet. 1993;253:59–64. doi: 10.1007/BF02768730. PubMed DOI
BONNIN A, LEVITT P. Placental Source for 5-HT that tunes fetal brain development. Neuropsychopharmacology. 2012;37:299–300. doi: 10.1038/npp.2011.194. PubMed DOI PMC
BRITAN A, MAFFRE V, TONE S, DREVET JR. Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res. 2006;324:301–310. doi: 10.1007/s00441-005-0151-7. PubMed DOI
BUZNIKOV GA, SHMUKLER YB, LAUDER JM. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol. 1996;16:537–559. doi: 10.1007/BF02152056. PubMed DOI PMC
CHEN Y, GUILLEMIN GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. 2009;2:1–19. doi: 10.4137/IJTR.S2097. PubMed DOI PMC
CHRISTEN S, PETERHANS E, STOCKER R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci. 1990;87:2506–2510. doi: 10.1073/pnas.87.7.2506. PubMed DOI PMC
COTE F, FLIGNY C, BAYARD E, LAUNAY JM, GERSHON MD, MALLET J, VODJDANI G. Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci. 2007;104:329–334. doi: 10.1073/pnas.0606722104. PubMed DOI PMC
DAFOPOULOS K, MESSINI CI, ANIFANDIS G, GEORGOULIAS P, SOURLAS D, MESSINIS IE. Blood ghrelin, adiponectin and resistin levels during controlled ovarian stimulation in IVF cycles. Physiol Res. 2016;65:809–814. doi: 10.33549/physiolres.933295. PubMed DOI
DOHERTY LF, KWON HE, TAYLOR HS. Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling. Am J Physiol Endocrinol Metab. 2011;300:E86–93. doi: 10.1152/ajpendo.00439.2010. PubMed DOI PMC
DRÁBKOVÁ P, ANDRLOVÁ L, HAMPL R, KANĎÁR R. Amino acid metabolism in human embryos. Physiol Res. 2016;65:823–832. doi: 10.33549/physiolres.933240. PubMed DOI
FABJAN T, EVRTAČNIK-BOKAL E, KUMER K, OSREDKAR J. Determination of oxidative stress balance in follicular fluid. J Lab Med. 2018;42:51–58. doi: 10.1515/labmed-2017-0106. DOI
FORREST CM, KHALIL OS, PISAR M, DARLINGTON LG, STONE TW. Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Res. 2013;1504:1–15. doi: 10.1016/j.brainres.2013.01.031. PubMed DOI
FTUKIJWATARI T, MURAKAMI M, OHTA M, KIMURA N, JIN-NO Y, SASAKI R, SHIBATA K. Changes in the urinary excretion of the metabolites of the tryptophan-niacin pathway during pregnancy in Japanese women and rats. J Nutr Sci Vitaminol. 2004;50:392–398. doi: 10.3177/jnsv.50.392. PubMed DOI
GROEBNER AE, SCHULKE K, SCHEFOLD JC, FUSCH G, SINOWATZ F, REICHENBACH HD, WOLF E, MEYER HH, ULBRICH SE. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reprod Fertil Dev. 2011a;23:619–632. doi: 10.1071/RD10230. PubMed DOI
GROEBNER AE, RUBIO-ALIAGA I, SCHULKE K, REICHENBACH HD, DANIEL H, WOLF E, MEYER HH, ULBRICH SE. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction. 2011b;141:685–695. doi: 10.1071/RD10230. PubMed DOI
GROZDICS E, BERTA L, BAJNOK A, VERES G, ILISZ I, KLIVENYI P, RIGO J, JR, VECSEI L, TULASSAY T, TOLDI G. B7 costimulation and intracellular indoleamine-2,3-dioxygenase (IDO) expression in peripheral blood of healthy pregnant and non-pregnant women. BMC Pregnancy Childbirth. 2014;14(306):1–9. doi: 10.1186/1471-2393-14-306. PubMed DOI PMC
HANNAN NJ, BAMBANG K, KAITU’U-LINO TJ, KONJE JC, TONG S. A bioplex analysis of cytokines and chemokines in first trimester maternal plasma to screen for predictors of miscarriage. PLoS ONE. 2014;9:e93320. doi: 10.1371/journal.pone.0093320. PubMed DOI PMC
HERY M, FRANCOIS-BELLAN AM, HERY F, DEPREZ P, BECQUET D. Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5-HT7 receptors. Endocrine. 1997;7:261–265. doi: 10.1007/BF02778149. PubMed DOI
HOLTAN SG, CHEN Y, KAIMAL R, CREEDON DJ, ENNINGA EAL, NEVALA WK, MARKOVIC SN. Growth modelling of the maternal cytokine milieu throughout normal pregnancy: macrophage-derived chemokine decreases as inflammation/counterregulation increases. J Immunol Res. 2015;2015:1–11. doi: 10.1155/2015/952571. PubMed DOI PMC
IL’KOVA G, REHAK P, VESELA J, CIKOS S, FABIAN D, CZIKKOVA S, KOPPEL J. Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote. 2004;12:205–213. doi: 10.1017/S0967199404002862. PubMed DOI
KISS J, HALASZ B. Demonstration of serotoninergic axons terminating on luteinizing hormone-releasing hormone neurons in the preoptic area of the rat using a combination of immunocytochemistry and high resolution autoradiography. Neuroscience. 1985;14:69–78. doi: 10.1016/0306-4522(85)90164-2. PubMed DOI
KUDO Y, BOYD CA, SPYROPOULOU I, REDMAN CW, TAKIKAWA O, KATSUKI T, HARA T, OHAMA K, SARGENT IL. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol. 2004a;61:87–98. doi: 10.1016/j.jri.2003.11.004. PubMed DOI
KUDO Y, HARA T, KATSUKI T, TOYOFUKU A, KATSURA Y, TAKIKAWA O, FUJII T, OHAMA K. Mechanisms regulating the expression of indoleamine 2,3-dioxygenase during decidualization of human endometrium. Hum Reprod. 2004b;19:1222–1230. doi: 10.1093/humrep/deh218. PubMed DOI
LEE GK, PARK HJ, MACLEOD M, CHANDLER P, MUNN DH, MELLOR AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology. 2002;107:452–460. doi: 10.1046/j.1365-2567.2002.01526.x. PubMed DOI PMC
LE FLOC’H N, OTTEN W, MERLOT E. Tryptophan metabolism, from nutrition to potential therapeutic application. Amino Acids. 2011;41:1195–1205. doi: 10.1007/s00726-010-0752-7. PubMed DOI
LI S, PELLETIER G. Involvement of serotonin in the regulation of GnRH gene expression in the male rat brain. Neuropeptides. 1995;29:21–25. doi: 10.1016/0143-4179(95)90052-7. PubMed DOI
LIGAM P, MANUELPILLAI U, WALLACE EM, WALKER D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta. 2005;26:498–504. doi: 10.1016/j.placenta.2004.08.009. PubMed DOI
MANUELPILLAI U, LIGAM P, SMYTHE G, WALLACE EM, HIRST J, WALKER DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol. 2005;192:280–288. doi: 10.1016/j.ajog.2004.06.090. PubMed DOI
MELLOR AL, MUNN DH. Tryptophan catabolism prevents maternal T cells from activating lethal anti-fetal immune responses. J Reprod Immunol. 2001;52:5–13. doi: 10.1016/S0165-0378(01)00118-8. PubMed DOI
MUNN DH, SHAFIZADEH E, ATTWOOD JT, BONDAREV I, PASHINE A, MELLOR AL. Inhibition of T Cell Proliferation by Macrophage Tryptophan Catabolism. J Exp Med. 1999;189:1363–1372. doi: 10.1084/jem.189.9.1363. PubMed DOI PMC
MUNN DH, ZHOU M, ATTWOOD JT, BONDAREV I, CONWAY SJ, MARSHALL B, BROWN C, MELLOR AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–1193. doi: 10.1126/science.281.5380.1191. PubMed DOI
SAINIO EL, PULKKI K, YOUNG SN. L-tryptophan: biochemical, nutritional and pharmacological aspects. Amino Acids. 1996;10:21–47. doi: 10.1007/BF00806091. PubMed DOI
SANTILLAN MK, PELHAM CJ, KETSAWATSOMKRON P, SANTILLAN DA, DAVIS DR, DEVOR EJ, GIBSON-CORLEY KN, SCROGGINS SM, GROBE JL, YANG B, HUNTER SK, SIGMUND CD. Pregnant mice lacking indoleamine 2,3-dioxygenase exhibit preeclampsia phenotypes. Physiol Rep. 2015;3:1–9. doi: 10.14814/phy2.12257. PubMed DOI PMC
SCHROCKSNADEL H, BAIER-BITTERLICH G, DAPUNT O, WACHTER H, FUCHS D. Decreased plasma tryptophan in pregnancy. Obstet Gynecol. 1996;88:47–50. doi: 10.1016/0029-7844(96)00084-1. PubMed DOI
STONE TW, STOY N, DARLINGTON LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci. 2013;34:136–143. doi: 10.1016/j.tips.2012.09.006. PubMed DOI
SUZUKI S, TONE S, TAKIKAWA O, KUBO T, KOHNO I, MINATOGAWA Y. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem J. 2001;355:425–429. doi: 10.1042/bj3550425. PubMed DOI PMC
VÁRNAGY Á, BÓDIS J, KOVÁCS GL, SULYOK E, RAUH M, RASCHER W. Metabolic hormones in follicular fluid in women undergoing in vitro fertilization. J Reprod Med: 2013;58:305–311. PubMed
VÁRNAGY Á, KŐSZEGI T, GYÖRGYI E, SULYOK E, PRÉMUSZ V, BÓDIS J. Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: Focusing on endometriosis. Hum Fertil. 2018:1–9. PubMed
VESELA J, REHAK P, MIHALIK J, CZIKKOVA S, POKORNY J, KOPPEL J. Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol Res. 2003;52:223–228. PubMed
WEISS G, DIEZ-RUIZ A, MURR C, THEUR I, FUCHS D. Tryptophan metabolites as scavengers of reactive oxygen and chlorine species. Pteridines. 2002;13:140–143. doi: 10.1515/pteridines.2002.13.4.140. DOI
WICHERS MC, KOEK GH, ROBAEYS G, VERKERK R, SCHARPE S, MAES M. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry. 2005;10:538–544. doi: 10.1038/sj.mp.4001600. PubMed DOI
WOLF H, BROWN RR, PRICE JM, MADSEN PO. Studies on tryptophan metabolism in male subjects treated with female sex hormones. J Clin Endocrinol Metab. 1970;31:397–408. doi: 10.1210/jcem-31-4-397. PubMed DOI
WOLF H. Studies on tryptophan metabolism in man. Scand J Clin Lab Invest. 1974;136:1–186. PubMed
XU K, LIU G, FU C. The tryptophan pathway targeting antioxidant capacity in the placenta. Oxid Med Cell Longev. 2018;2018:1–8. doi: 10.1155/2018/1054797. PubMed DOI PMC
YUE CY, ZHANG B, YING CM. Elevated serum level of IL-35 associated with the maintenance of maternal-fetal immune tolerance in normal pregnancy. PLoS One. 2015;10:e0128219. doi: 10.1371/journal.pone.0128219. PubMed DOI PMC