Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
GAP 2871
Rajiv Gandhi Science and Technology Commission, Government of Maharashtra
PubMed
33140282
DOI
10.1007/s12223-020-00830-4
PII: 10.1007/s12223-020-00830-4
Knihovny.cz E-resources
- MeSH
- Bacteria genetics MeSH
- Ecosystem MeSH
- Coral Reefs * MeSH
- Porifera * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- India MeSH
The bacterial diversity associated with eroding sponges belonging to the Cliona viridis species complex is scarcely known. Cliona thomasi described from the West Coast of India is a new introduction to the viridis species complex. In this study, we determined the bacterial diversity associated with C. thomasi using next-generation sequencing. The results revealed the dominance of Proteobacteria followed by Cyanobacteria, Actinobacteria and Firmicutes. Among Proteobacteria, the Alphaproteobacteria were found to be the most dominant class. Furthermore, at the genus level, Rhodothalassium were highly abundant followed by Endozoicomonas in sponge samples. The beta-diversity and species richness measures showed remarkably lower diversity in Cliona thomasi than the ambient environment. The determined lower bacterial diversity in C. thomasi than the environmental samples, thus, categorized it as a low microbial abundance (LMA). Functional annotation of the C. thomasi-associated bacterial community indicates their possible role in photo-autotrophy, aerobic nitrification, coupling of sulphate reduction and sulphide oxidization. The present study unveils the bacterial diversity in bioeroding C. thomasi, which is a crucial step to determine the functions of the sponge holobiont in coral reef ecosystem.
CSIR National Institute of Oceanography Dona Paula Goa India
Department of Marine Sciences Bharathidasan University Tiruchirappalli Tamil Nadu India
School of Biosciences University of Birmingham Birmingham B15 2TT UK
School of Earth Ocean and Atmospheric Sciences Goa University Taleigao Goa India
See more in PubMed
Achlatis M, Schönberg CHL, van der Zande RM, LaJeunesse TC, Hoegh-Guldberg O, Dove S (2019) Photosynthesis by symbiotic sponges enhances their ability to erode calcium carbonate. J Exp Mar Bio Ecol 516:140–149. https://doi.org/10.1016/j.jembe.2019.04.010 DOI
Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbo CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40:88–W95. https://doi.org/10.1093/nar/gks497 DOI
Audia C, Afonso De Menezes B, Sanches Afonso R et al (2017) Williamsia spongiae sp. nov., an actinomycete isolated from the marine sponge Amphimedon viridis. Int J Syst Evol Microbiol 67:1260–1265. https://doi.org/10.1099/ijsem.0.001796
Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90:832–843. https://doi.org/10.1111/1574-6941.12441 PubMed DOI
Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353. https://doi.org/10.1016/j.ecss.2008.05.002 DOI
Blanquer A, Uriz MJ, Galand PE (2013) Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges. Environ Microbiol 15:3008–3019. https://doi.org/10.1111/1462-2920.12261 PubMed DOI
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857 DOI
Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340. https://doi.org/10.1146/annurev-micro-102215-095440 PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303 PubMed DOI PMC
Carballo JL, Bautista E, Nava H et al (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3:872–886. https://doi.org/10.1002/ece3.452 PubMed DOI PMC
Cárdenas CA, Bell JJ, Davy SK, Hoggard M, Taylor MW (2014) Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol Ecol 88:516–527. https://doi.org/10.1111/1574-6941.12317 PubMed DOI
Clarke KR, Gorley RN (2015) PRIMER v7 Plymouth Routines In Multivariate Ecological Research. www.primer-e.com . Accessed 15 Feb 2020
de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981 PubMed DOI
De K, Sautya S, Mote S et al (2015) Is climate change triggering coral bleaching in tropical reef? Curr Sci 109:1379–1880
De K, Nanajkar M, Mote S, Ingole B (2020) Coral damage by recreational diving activities in a marine protected area of India: unaccountability leading to ‘tragedy of the not so commons. Mar Pollut Bull 155:111190. https://doi.org/10.1016/j.marpolbul.2020.111190 PubMed DOI
Dubiller N, Mülders C, Ferdelman T et al (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302. https://doi.org/10.1038/35077067 DOI
Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M (2015) Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol 91:1–11. https://doi.org/10.1093/femsec/fiv115 DOI
Esteves AIS, Hardoim CCP, Xavier JR, Gonçalves JMS, Costa R (2013) Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 85:519–536. https://doi.org/10.1111/1574-6941.12140 PubMed DOI
Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 109:E1878–E1887. https://doi.org/10.1073/pnas.1203287109 PubMed DOI PMC
Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One 8:e72961. https://doi.org/10.1371/journal.pone.0072961 PubMed DOI PMC
Fiore CL, Labrie M, Jarett JK, Lesser MP (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol 6(364):1–18. https://doi.org/10.3389/fmicb.2015.00364 DOI
Gardères J, Bedoux G, Koutsouveli V, Crequer S, Desriac F, Pennec G (2015) Lipopolysaccharides from commensal and opportunistic bacteria: characterization and response of the immune system of the host sponge Suberites domuncula. Mar Drugs 13:4985–5006. https://doi.org/10.3390/md13084985 PubMed DOI PMC
Gardner SG, Nielsen DA, Laczka O, Shimmon R, Beltran VH, Ralph PJ, Petrou K (2016) Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc R Soc B Biol Sci 283:1–9. https://doi.org/10.1098/rspb.2015.2418 DOI
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88. https://doi.org/10.1086/BBLv227n1p78 PubMed DOI
Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. https://doi.org/10.1038/nrmicro2839 PubMed DOI
Hill M, Allenby A, Ramsby B, Schönberg C, Hill A (2011) Molecular phylogenetics and evolution Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88. https://doi.org/10.1016/j.ympev.2011.01.006 PubMed DOI
Hoffmann F, Rapp HT, Zöller T, Reitner J (2003) Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia barretti bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae). J Biotechnol 100:109–118. https://doi.org/10.1016/S0168-1656(02)00258-4 PubMed DOI
Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243. https://doi.org/10.1111/j.1462-2920.2009.01944.x PubMed DOI
Hussain A, De K, Thomas L et al (2016) Prevalence of skeletal tissue growth anomalies in a scleractinian coral: Turbinaria mesenterina of Malvan Marine Sanctuary, Eastern Arabian Sea. Dis Aquat Organ 121:79–83. https://doi.org/10.3354/dao03038 PubMed DOI
Jensen S, Duperron S, Birkeland N-K, Hovland M (2010) Intracellular Oceanospirillales bacteria inhabit gills of Acesta bivalves. FEMS Microbiol Ecol 74:523–533. https://doi.org/10.1111/j.1574-6941.2010.00981.x PubMed DOI
Jensen S, Fortunato SAV, Hoffmann F, Hoem S, Rapp HT, Øvreås L, Torsvik VL (2017) The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb Ecol 73:668–676. https://doi.org/10.1007/s00248-016-0836-3 PubMed DOI
Jeong J-B, Kim K-H, Park J-S (2015) Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing. J Microbiol Biotechnol 25:1–10 DOI
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J (2018) Marine sponge microbial association: towards disclosing unique symbiotic interactions. Mar Environ Res 140:169–179. https://doi.org/10.1016/j.marenvres.2018.04.017 PubMed DOI
Le Pennec G, Perovic S, Ammar MSA et al (2003) Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron. J Biotechnol 100:93–108 DOI
Li H, Zhang Y, Li D, Xu H, Chen GX, Zhang CG (2009) Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils. Soil Biol Biochem 41:954–968. https://doi.org/10.1016/J.SOILBIO.2008.10.030 DOI
Luter HM, Gibb K, Webster NS (2014) Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00216 DOI
Matthew S, Salvador LA, Schupp PJ, Paul VJ, Luesch H (2010) Cytotoxic halogenated macrolides and modified peptides from the apratoxin-producing marine cyanobacterium Lyngbya bouillonii from Guam. J Nat Prod 73:1544–1552. https://doi.org/10.1021/np1004032 PubMed DOI PMC
Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014) Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698. https://doi.org/10.1111/1462-2920.12533 PubMed DOI
Morganti T, Coma R, Yahel G, Ribes M (2017) Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr 62:1963–1983. https://doi.org/10.1002/lno.10546 DOI
Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908. https://doi.org/10.1038/ismej.2014.188 PubMed DOI
Mote S, Schönberg CHL, Samaai T, Gupta V, Ingole B (2019) A new clionaid sponge infests live corals on the west coast of India (Porifera, Demospongiae, Clionaida). Syst Biodivers 17:190–206. https://doi.org/10.1080/14772000.2018.1513430 DOI
Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700 DOI
Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 63:709–714. https://doi.org/10.1099/ijs.0.042077-0 PubMed DOI
Oksanen J (2017) Vegan: ecological diversity. R Packag. Version 2.4-4 11. https://cran.r-project.org/package=vegan
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. https://doi.org/10.1128/MMBR.00039-10 PubMed DOI PMC
Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:8. https://doi.org/10.1186/s40168-019-0776-5 PubMed DOI PMC
Parfrey LW, Moreau CS, Russell JA (2018) Introduction: the host-associated microbiome: pattern, process and function. Mol Ecol 27:1749–1765 DOI
Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS (2016) Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep 6:39038. https://doi.org/10.1038/srep39038 PubMed DOI PMC
Pineda M-C, Strehlow B, Sternel M, Duckworth A, Jones R, Webster NS (2017) Effects of suspended sediments on the sponge holobiont with implications for dredging management. Sci Rep 7:4925. https://doi.org/10.1038/s41598-017-05241-z PubMed DOI PMC
Pita L, Turon X, López-Legentil S, Erwin PM (2013) Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol Ecol 86:268–276. https://doi.org/10.1111/1574-6941.12159 PubMed DOI
Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:46. https://doi.org/10.1186/s40168-018-0428-1 PubMed DOI PMC
Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M (2014) Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar Ecol 35:414–424. https://doi.org/10.1111/maec.12098 DOI
Ramsby BD, Hill MS, Thornhill DJ, Steenhuizen SF, Achlatis M, Lewis AM, LaJeunesse TC (2017) Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. J Phycol 53:951–960. https://doi.org/10.1111/jpy.12576 PubMed DOI
Ramsby BD, Hoogenboom MO, Smith HA, Whalan S, Webster NS (2018a) The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-26535-w DOI
Ramsby BD, Hoogenboom MO, Whalan S, Webster NS (2018b) Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge. Mol Ecol 27:2124–2137. https://doi.org/10.1111/mec.14544 PubMed DOI
Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, Sharp JH, Coma R (2012) Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14:1224–1239. https://doi.org/10.1111/j.1462-2920.2012.02701.x PubMed DOI
Ribes M, Dziallas C, Coma R, Riemann L (2015) Microbial diversity and putative diazotrophy in high- and low- microbial-abundance mediterranean sponges. Appl Environ Microbiol 81:5683–5693. https://doi.org/10.1128/AEM.01320-15 PubMed DOI PMC
Roughgarden J, Scott GF et al (2017) Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory 0:3. https://doi.org/10.1007/s13752-017-0287-1 DOI
Sacristán-Soriano O, Turon X, Hill M (2020) Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): the role of host phylogeny and environmental plasticity. Coral Reefs 39:1285–1298. https://doi.org/10.1007/s00338-020-01962-2 DOI
Sawhney S, Mishra JK (2019) Bioactive potential of bacterial endosymbionts isolated from Lamellodysidea herbacea, marine sponge from the coast of South Andaman, India, against human bacterial pathogens. J Appl Pharm Sci 9:1–8. https://doi.org/10.7324/JAPS.2019.90301 DOI
Schönberg CHL, Fang JKH, Carreiro-Silva M, Tribollet A, Wisshak M(2017) Bioerosion: the other ocean acidification problem. ICES J Mar Sci 74:895–925
Schorn MA, Jordan PA, Podell S et al (2019) Comparative genomics of cyanobacterial symbionts reveals distinct, specialized metabolism in tropical dysideidae sponges. MBio 10:e00821–e00819 DOI
Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524. https://doi.org/10.1111/j.1462-2920.2011.02664.x PubMed DOI
Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U (2017) Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J 11:2465–2478. https://doi.org/10.1038/ismej.2017.101 PubMed DOI PMC
Soares AR (2016) Diversity and specificity of the marine sponge microbiome as inspected by next generation sequencing. Ph. D. dessertation. University of Algarve, Portugal. Accessed online https://core.ac.uk/download/pdf/61528073.pdf . Accessed 18 Jan 2020
Southwell MW, Weisz JB, Martens CS, Lindquist N (2008) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986–996. https://doi.org/10.4319/lo.2008.53.3.0986 DOI
Steindler L, Beer S, Ilan M (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33:263–273
Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, Schupp PJ (2016) In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4:e1936. https://doi.org/10.7717/peerj.1936 PubMed DOI PMC
Steinert G, Wemheuer B, Janussen D et al (2019) Prokaryotic diversity and community patterns in Antarctic continental shelf sponges. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00297
Teruya T, Nakagawa S, Koyama T, Arimoto H, Kita M, Uemura D (2004) Nakiterpiosin and nakiterpiosinone, novel cytotoxic C-nor-D-homosteroids from the Okinawan sponge Terpios hoshinota. Tetrahedron 60:6989–6993. https://doi.org/10.1016/J.TET.2003.08.083 DOI
Thacker RW, Freeman CJ (2012) Sponge–microbe symbioses: recent advances and new directions. In: Becerro MA, Uriz MJ, Maldonado MTX (eds) Advances in sponge science: phylogeny, systematics, ecology, Advances in marine biology. Academic Press, Amsterdam, pp 57–111
Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870. https://doi.org/10.1038/ncomms11870 PubMed DOI PMC
Tout J, Astudillo-García C, Taylor MW, Tyson GW, Stocker R, Ralph PJ, Seymour JR, Webster NS (2017) Redefining the sponge-symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards host-derived compounds. Environ Microbiol Rep 9:750–755. https://doi.org/10.1111/1758-2229.12591 PubMed DOI
Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H (2019) Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb Ecol 78:243–256. https://doi.org/10.1007/s00248-018-1285-y PubMed DOI
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07 PubMed DOI PMC
Webster NS, Thomas T (2016) The sponge hologenome. MBio 7:e00135–e00116. https://doi.org/10.1128/MBIO.00135-16 PubMed DOI PMC
Wulff J (2001) Assessing and monitoring coral reef sponges: why and how? Bull Mar Sci 69:831–846